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Abstract

In this thesis, we introduce a novel class of many-body quantum system, which we term
‘quantum small worlds’. These are strongly-interacting systems that interpolate between
completely ordered (nearest-neighbour, next-to-nearest-neighbour etc.) and completely
random interactions. They are systems of quantum spin particles in which the network
topology is given by the Watts-Strogatz model of network theory.

As such, they furnish a novel laboratory for studying quantum systems transitioning
between integrable and non-integrable behaviour. Our motivation is to understand how
the dynamics of the system are affected by this transition, particularly with regards to
the ability of the system to scramble (quantum) information, and potential emergence of
chaotic behaviour.

Our work begins with a review of the relevant literature regarding algebraic graph theory
and quantum chaos. Next, we introduce the model by starting from a well understood
integrable system, a spin-1

2
Heisenberg, or Ising, chain. We then inject a small number of

long-range interactions and study its ability to scramble quantum information using two
primary devices: the out-of-time-order correlator (OTOC) and the spectral form factor
(SFF). We find that the system shows increasingly rapid scrambling as its interactions
become progressively more random, with no evidence of quantum chaos as diagnosed by
either of these devices.
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Chapter 1

Introduction

1.1 Background and Motivation

Quantum small worlds are many-body quantum systems that are able to transition be-
tween completely ordered and disordered behaviour, through the introduction of random,
long-range, interactions. These form a novel class of models of strongly-correlated quan-
tum matter − systems in which the dynamics are dominated by strong couplings between
the constituent particles − where qualitatively new behaviour emerges from the large
number of interactions; behaviour that would not otherwise be observed by simply extrap-
olating from the, fundamentally well-understood, individual particles and interactions.

Indeed, two such phenomena that have received significant attention in the last five to
ten years are (many-body) quantum chaos and (quantum information) scrambling. As
for classical systems, chaos is characterised by sensitive dependence on initial conditions
(colloquially, the butterfly effect; introduced by Lorenz (3; 4)). However, for quantum me-
chanical systems, understanding this sensitivity is more complex. This is the case since
one does not, particularly for many-body problems, have well-defined particle trajecto-
ries. Without being able to extract a classical Lyapunov exponent that would indicate

1



CHAPTER 1. INTRODUCTION

exponential divergence of the trajectories (5), classifying a qauntum system as chaotic is
more subtle, and less well-defined. Historically, quantum chaos (chaology, according to
Berry (6)) was concerned with the study of the quantum mechanical origins of classically
chaotic systems in the classical limit. More recently, the field of many-body quantum
chaos has gained traction through the work of Shenker and Stanford (7), in their study
of the butterfly effect in strongly-coupled large-N theories.

The concept of scrambling was first introduced, in the context of the black hole information
problem, by Hayden and Preskill (8), and refined by Susskind and Sekino (9), thereby
bridging the fields of quantum information theory and high energy physics. It describes
the process by which the quanta of information contained in the initial state become
spread over all the system degrees of freedom, and are no longer recoverable by simply
probing any single local observable (10).

Furthermore, since this scrambling represents an effective loss of memory in a system,
it is closely related to quantum thermalisation in closed quantum systems, whereby an
initially out-of-equilibrium system reaches thermal equilibrium through unitary time evo-
lution. The study of closed quantum thermalisation was initiated by Deutsch (11), and
expanded by Srednicki’s proposal of the Eigenstate Thermalisation Hypothesis (ETH)
(12). Since there is no coupling to an external heat bath (as in an open system), the
initial conditions become spread over the various subsystems. Thus, without probing a
large number of observables over the whole system, there is an emergence of perceived
irreversibility, despite unitary time evolution.

This is to be contrasted with many-body localisation (MBL), an extension of Anderson
localisation (13) to many-body systems, introduced in the seminal work of Basko et al
(14). Here, closed quantum systems exhibiting MBL fail to reach thermal equilibrium, and
hence the information of the initial conditions is retained over long (infinite) timescales
in local operators (15).

As alluded to above, while strongly-correlated quantum systems historically fell in the
domain of condensed matter physics, the past five years have witnessed a tremendous
global effort to understand the emergence of spacetime from the quantum properties of
matter and information (16). This has been precipitated largely by studies of the gauge/-
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1.1. BACKGROUND AND MOTIVATION

gravity correspondence, following the groundbreaking work of Maldacena (17). In turn,
this large body of recent work has redefined the boundaries of contemporary condensed
matter physics, high energy theory and quantum information theory, resulting in a num-
ber of remarkable discoveries. Among these are: (i) Maldacena, Shenker and Stanford’s
(MSS) bound on the growth rate of chaos in thermal quantum systems (18), (ii) Kitaev’s
elaboration on the Sachdev-Ye spin-glass model (19) to the Sachdev-Ye-Kitaev (SYK)
model (20) of the quantum mechanics of N Majorana fermions with infinitely long range
disorder, and (iii) Witten’s insight (21) that the perturbative structure of the large-N
limit of the SYK model is the same as colored random tensor models (22), thereby un-
covering a new and tractable sweet-spot in between vector models and matrix models.
Within this context, there are three lessons that are of particular importance to us: (i)
Chaos and scrambling are generic features of quantum systems that thermalise, (ii) novel
classes of many-body spin networks are able to furnish a new laboratory for detailed study
of the relationships between chaos, disorder, randomness and scrambling, which are not
yet well-understood, and (iii) a new set of diagnostic measures is required for this work.

Regarding point (ii), we note that the vast majority of work on such systems falls into a
small number of categories: (i) regular, integrable models, such as those of Ising or Heisen-
berg (2; 23), (ii) Infinite-range theories, with all-to-all random weighted interactions, such
as the SY, SYK, infinite-range Heisenberg spin glass (24), Sherrington-Kirkpatrick (SK)
(25) models, (iii) models featuring power-law interactions (26), and (iv) modified regu-
lar models with a disorder term, either through external interactions (27), longer-range
hopping terms (28) or weighted interactions (29). We note that this classification is il-
lustrative, not exhaustive. Moreover, it is worth mentioning the contemporary work of
Bentsen et al (30), in which they analyse the scrambling behaviour on systems featuring
sparse network topologies.

Under these considerations, it is apparent to us that most of the aforementioned models
are either integrable or non-integrable. Therefore, we intend to introduce, and study, a
model in which we may interpolate between these two classes of behaviour, through the
introduction of a disorder parameter. To this end, we take a graph-theoretic approach
towards constructing a network with parametric disorder, and propose the concept of a
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CHAPTER 1. INTRODUCTION

quantum small world. This is a system in which the network topology is based on the
Watts-Strogatz model (31) of small-world networks. This relatively simple model forms
the foundations of modern network theory (32), and has been successfully applied to a
wide range of phenomena in different fields of study, from human social networks, electrical
transmission grids and the internet (31), to physical neural networks (33; 34) and protein
interactions (35). The sheer breadth of the impact of the original article is evidenced by
the > 40000 citations (as of January 2020), making it one of the most highly-cited papers
of all time (36).

Beginning with a sparse, yet regular graph, we associate each vertex, and each edge, with
a spin particle, and interaction, respectively. We will therefore be able to tune the amount
of randomness in the system by probabilistically rewiring small numbers of the regular
couplings. In this way, we can transition from a regular, completely ordered, network,
to a completely disordered network of random couplings. This is a novel, yet general,
approach to constructing a many-body network, and we will be able to apply our method
to generate a wide range of network configurations.

Finally, let us turn to point (iii) above regarding diagnostics of chaos. We note that, to
date, the primary measure in strongly-correlated systems has been the squared commuta-
tor, or equivalently, the out-of-time-order correlator (OTOC), which essentially measures
how the commutativity of local operators in a system evolve in time, thereby providing
a measure of the scrambling, or information spreading. First introduced by Larkin and
Ovchinnikov (37), it was repurposed by Kitaev in his initial work on the SYK model, and
used, most significantly, by Roberts and Stanford (38) to show that the SYK model sat-
urates the MSS bound and is therefore a maximally chaotic theory. However, as pointed
out by Hashimoto et al (39), they are still not yet well understood in generic quantum
theories. Hence, a large body of work has developed around studying the OTOCs for
different models of many-body systems.

In order to further understand exactly what information is encoded in the OTOCs, it
has been necessary to compare them to other diagnostics that have been more well-
established in the quantum chaos community, most notably the spectral statistics (5),
and the spectral form factor (SFF) (1), drawn from the field of random matrix theory
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1.2. THESIS OVERVIEW

(40). Most recently, theoretical work in understanding these diagnostics has uncovered
some striking relationships. In particular, de Mello Koch et al (41) obtained the (two-
point) SFF from the (two-point) OTOC averaged over the Heisenberg group for bosonic
quantum systems. This was an extension of work initiated by Cotler et al (42). This is
in addition to Ryu et al’s (43) work in uncovering a web of quantum chaos diagnostics
in two-dimensional conformal field theories (2D CFTs). Finally, we mention Schalm et
al’s proposal of an Operator Thermalisation Hypothesis (OTH), which is a fascinating
contrast to the thermalisation due to dynamics, as proposed by the ETH. In the OTH,
thermalisation occurs due to the specific choice of operator. Most surprisingly, their work
shows that even non-interacting, free field, theories (containing an infinite set of conserved
charges), are able to scramble through careful choice of composite operators.

With these considerations in mind, we turn to the central questions of our thesis: What
can we learn from, and about, OTOCs in the context of scrambling in strongly-correlated
quantum systems that transition between completely ordered and completely disordered
behaviour?

1.2 Thesis Overview

In this thesis, we will be applying the Watts-Strogatz model of network theory to gener-
ate systems of randomly interacting quantum spins, and studying them through known
diagnostics of quantum chaos.

In Chapter 2, we present a review of algebraic graph, and network, theory. Beginning with
basic definitions and concepts, we build up the foundations that will enable us to describe
the Watts-Strogatz model, the algorithm for its construction, as well as its properties.
We go on to study these properties through a number of parameters that aim to quantify
network ‘small-worldness’.

In Chapter 3, we introduce the theory of chaos in quantum systems. This begins with an
historical overview of the field, where we discuss its origins in the study of the complex
energy spectra of large atomic nuclei, and their relation to the mathematical field of
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CHAPTER 1. INTRODUCTION

random matrix theory. Next, we consider two diagnostic tools, the out-of-time-order
correlator and spectral form factor, which, in recent years, have been widely studied in
the context of chaos in strongly-correlated condensed matter systems.

In Chapter 4, we present a detailed analysis of the numerical simulations of our quantum
small world networks. We begin with a discussion of the methodology of our computations,
and how these are applied to generate a quantum small world network. As part of our
analysis, we confirm the validity of our numerical procedures by reproducing existing
results in the literature for well-known spin chains. We then go on to introduce increasing
levels of disorder into these networks through the random rewiring procedure outlined in
Chapter 2. We analyse their effects on the model through calculations of the out-of-time-
order correlators and spectral form factors as the network parameters for edge density
and amount of rewiring are varied. Besides the confirmatory work in reproducing known
results, the work in this chapter is original and has been submitted for publication (44).

In Chapter 5, we conclude this thesis with a summary of its aims, content, and central
results. We go on to discuss a number of potential directions for future work on this topic,
beginning with the existing shortcomings and how best they may be improved, as well as
further extensions. We note that some of this work is currently ongoing.
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Chapter 2

Classical Small Worlds

I read somewhere that everybody on this planet is separated

by only six other people. Six degrees of separation between us

and everyone else on this planet. The President of the United

States, a gondolier in Venice, just fill in the names... I am

bound, you are bound, to everyone on this planet by a trail of

six people.

‘Ouisa Kitteridge’ in Six Degrees of Separation

John Guare (45)

2.1 Introduction

First penned by John Guare in his 1990 screenplay of the same name (45), the term ‘six
degrees of separation’ was used to describe the observed small-world phenomenon within
the context of human social networks; heuristically, this is based on the observation,
first attributed to the Hungarian writer Karinthy in his 1929 anthology ‘Everything is
Different’ (32), that globalisation has lead to a society in which any two individuals
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CHAPTER 2. CLASSICAL SMALL WORLDS

on the planet are ‘connected’ by a chain of, on average, six acquaintances. The first
scientific experiments to explore this effect were conducted by the American social scientist
Stanley Milgram in 1967 (46), and later formalised by Watts and Strogatz in their seminal
paper ‘Collective Dynamics of Small-world Networks’ (31), that laid the mathematical
foundations of modern network science (34), and forms the basis for our work.

In this chapter, we introduce the concepts from algebraic graph theory that will allow
us to construct and characterise classical small-world networks. Section 2.2 presents a
review of basic terminology that may be found in an introductory text on graph theory.
Section 2.3 makes precise the notion of the small-world phenomenon in network science;
we present the graph theoretic properties of such a model, an algorithmic approach to
its construction, as well as modern measures for quantifying small-worldness in a given
network.

2.2 Graph-theoretic Formalism

2.2.1 Definitions

We begin with a brief review of terminology from graph theory that is pertinent to our
work. Formal definitions and results may be found in Appendix ??.

Mathematically, a graph is a pair G = (V,E) where V is the vertex set and E is the edge
set of non-empty subsets of V . Elements v ∈ V and e ∈ E are called vertices, or nodes,
and edges, or connections, respectively.

In pure mathematics, graph theory is a rich, though abstract, field of study. However
its greatest strength lies in its application to real-world systems, or networks, in which
vertices and edges represent objects and their interactions, respectively.

Beginning with this most general definition, we want to restrict ourselves to the classes of
graphs that will be applicable to our particular systems of interest; those being quantum-
mechanical spin systems whose dynamics are governed by spin-exchange interactions (see
Chapter 4).
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2.2. GRAPH-THEORETIC FORMALISM

Since our intention is to perform numerical simulations, rather than, say, analytical cal-
culations in the large N limit, we consider only finite graphs, having a finite number of
vertices (graph order) and edges (graph size). Furthermore, we restrict ourselves to con-
nected graphs, in which every vertex is connected to every other vertex by some sequence
of edges (walk or path). In other words, we disregard any graphs that contain isolated
vertices or neighbourhoods, since we want to study the effects of interactions acting over
the full system. Finally, we are not interested in multipartite, or k-partite, graphs, in
which V is partitioned into k independent sets V = V1 ∩ . . . ∩ Vk such that there are no
edges between vertices within each partition. Thus, it is possible for any vertex to be
connected, or adjacent, to any other within our networks.

Regarding the spin-exchange interactions, we do not want our network to contain any
self-interactions (loops) or repetitions. Graphs without these edges are called simple.
Additionally, spin exchange operates on pairs of spin particles, thus we consider only
dyadic graphs, in which E ⊆ V × V contains only 2-element subsets of V .

Of course higher order interactions exist; for example we could consider a 4-particle in-
teraction of the form used in the SYK model, or even combinations of varying orders,
which would fall under the general class of hypergraphs. For the purposes of this disserta-
tion, however, we will focus our calculations on the simple case of 2-particle interactions.
Finally, since the spin exchange operates on two particles symmetrically, we need only
consider undirected graphs, having edges that do not distinguish between ‘in’ and ‘out’
vertices (as in a directed graph).

Given these constraints, we still have a number of degrees of freedom to consider in con-
structing our networks. Most obviously is the actual graph architecture, or topology,
which we discuss in detail in Section 2.3. Another is the interaction strength; we can
consider either binary, or unweighted, graphs, in which all edges represent interactions of
equal strength, or weighted graphs, in which we may vary the relative interaction strength
of connections. Although unweighted graphs are useful for extracting basic information
based on the overall graph structure, they often contain a large number of internal symme-
tries that may mask more fundamental features. In this case, further work can be done by
sampling individual edge weights as random variables from some statistical distribution.
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Another reference to the SYK model is relevant here; the actual network topology is that
of a complete graph, in which all vertices are connected to every other vertex. Since this
introduces a large number of symmetries into the system, the (hyper)-edge weights are
drawn from a Gaussian distribution (47).

2.2.2 Architectures

Having narrowed in on the classes of graphs in which we are interested, we can now
discuss the different network topologies that will be relevant in our study of spin chains
with long-range interactions.

To begin, let us consider the well-studied case of a one-dimensional spin chain, as con-
sidered in the Ising or Heisenberg models. These models feature only nearest-neighbour
interactions, in which each vertex interacts only with its two nearest (spatial) neighbours.
A further distinction may be made between those chains with non-periodic or periodic
boundary conditions, as shown in Figure 2.1. The periodic chain is known as a cycle
graph, denoted by CN , where N is the number of vertices. It is also a regular graph,
since each vertex has the same degree, or number of edges to which it is connected; in
particular, it is a 2-regular graph.

Working toward our goal of constructing a network that exhibits the small-world phe-
nomenon, and beginning with this fundamental structure of short-range connections, let
us consider two variations that introduce long-range interactions into the system.

The first approach is inspired by the fully-connected structure of the SYK model, the
complete graphs KN ; we may generalise the notion of the (2-regular) cycle graph to that
of a k-regular cycle, by introducing next-to-nearest-neighbour, next-to-next-to-nearest-
neighbour (and so on), connections, as shown in Figure 2.2. These are known as circulant
graphs, and denoted by Ck

N ; we may identify CN−1
N as isomorphic to the complete graph

KN .

The second approach is to consider the class of random graphs, which are distinct from
the regular, cycle, graphs in that their edges are chosen randomly. In fact, there are two
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2.2. GRAPH-THEORETIC FORMALISM

(a) Non-periodic (b) Periodic

Figure 2.1: Graph topologies of one-dimensional spin chains featuring nearest-neighbour
interactions, with N = 11 vertices.

closely related models, the Erdős-Rényi (48), G(N,M), and Gilbert (49), G(N, p), random
graphs, introduced independently in 1959. The G(N,M) model considers the ensemble
of all possible graphs of order N and size M , where any one graph is drawn from this
set (of

(
N
M

)
elements), with uniform probability

(
N
M

)−1
. The G(N, p) model connects each

possible pair of vertices, independently and uniformly, with probability p, resulting in a
graph with E[M ] = p

(
n
2

)
edges. These two models therefore become equivalent in the

limit limn→∞G(N, p) = G(N, p
(
n
2

)
).

2.2.3 Network Measures

With these network architectures defined, we are almost in a position to construct and
analyse small-world networks. However, we first need to introduce several measures that
will be useful in analysing general graph properties.
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(a) k = 2 (b) k = 4 (c) k = 6 (d) k = 8 (e) k = 10

Figure 2.2: k-regular cycle graphs of order 11 (11 vertices). k is typically even, except for
complete graphs of even order, where then k = N − 1.

Basics

The simplest two graph measures are of course the graph order and size, which, as we
have already seen, refer to the size of the vertex and edge sets, respectively; N = |V | and
M = |E|. We have also introduced the vertex degree, which we use to define the degree
sequence, a set of size N whose elements are the degree of the corresponding vertices,
{deg(i) | 1 ≤ i ≤ N}. This allows us to discuss a number of extensions, such as the
maximum degree, ∆(G), and minimum degree, δ(g), and degree distribution, P (k) = Nk

N
,

where Nk is the number of vertices having degree k. We note that, by Euler’s Handshaking
Lemma for undirected graphs,

M =
1

2

N∑
i=1

deg(i) (2.1)

Relating the order and size of a graph provides a measure of the density of edges, as

ρ(G) =
M

1
2
N(N − 1)

(2.2)

where the denominator is the number of edges in a complete graph of the same number of
vertices (the maximum possible number of edges). Taking this ratio gives us the density
as a fraction between 0 and 1. Similarly, we may define the edge sparsity as simply
1− ρ(G). However, both of these are only global measures of the overall number of edges
in a graph, and do not take into account local structures or additional features such as
edge weightings; a number of alternative approaches to quantifying graph density have
been proposed but are not relevant for our purposes, see, for example (50; 51).
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(a) g ∈ G(11, 22) (b) g ∈ G(11, 0.4)

Figure 2.3: Erdős-Rényi and Gilbert random graphs of order 11, withM = 22 and p = 0.4,
respectively. Note that the graph in G(11, 0, 4) has E[M ] = 22 but in fact contains only
19 edges.

Representations

The adjacency matrix, denoted A, is one of the most fundamental measures used to de-
scribe graph connectivity; it is the matrix representation that we shall use most frequently
to define our networks. Using the N rows and columns to represent vertices, each element
Aij corresponds to a possible edge, eij, between vertices i and j, as follows,

Aij =

ωij eij ∈ E

0 otherwise
(2.3)

where ωij is the weight of edge eij; for simplicity, we shall refer to a binary graph as a
special case of a weighted graph in which all edges have unit weighting.

The adjacency matrix is particularly useful, since it completely defines the topology of
the associated network. It is worth noting at this point that this representation (and
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1

2

3

4

5

6

(a) g ∈ G(6, 9).

1

2

3

4

5

6

(b) Circular permutation of g, g′.

Figure 2.4: Two identical random graphs of G(6, 9) differing only in vertex numbering.
The change in numbering corresponds to a circular permutation of the vertices. This
permutation is therefore also applied to the rows and columns of the adjacency matrices,
as well as to the elements of the degree distribution.

others, including the degree sequence), is not unique, since it is dependent on the vertex
numbering scheme applied. As an example to illustrate this, see Figure 2.4, where the
graph g′ is obtained from g by circular permutation of the vertices, leading to the following
adjacency matrices:

D(g) =



0 1 1 0 1 0

1 0 1 1 1 0

1 1 0 0 1 1

0 1 0 0 0 1

1 1 1 0 0 0

0 0 1 1 0 0


D(g′) =



0 0 0 1 1 0

0 0 1 1 0 1

0 1 0 1 1 1

1 1 1 0 0 1

1 0 1 0 0 0

0 1 1 1 0 0


Note that, although the vertex numberings, and hence adjacency matrices, differ between
these otherwise identical graphs, the eigenvalue spectra of the adjacency matrices are the
same, namely

{
1 +
√

5,−2, 1−
√

5,−1, 1, 0
}
.

While the adjacency matrix and degree sequence describe direct connections between
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vertex pairs, a further class of measures is based on indirect connections spanned by
sequences of edges. We have briefly mentioned the concept of a path; to be precise, a
path is a sequence of unique edges connecting two vertices such that no edge or vertex is
traversed more than once. In general, a sequence that may contain only repeated vertices
is a trail, and one that may contain repeated vertices and edges is called a walk. More
specifically, a path that starts and ends at the same vertex is a cycle.

Global Integration

Now, we have already seen that paths are important for determining whether a given graph
is connected or not, but they are also used for analysing many other graph properties.
Indeed, they naturally lead to the notion of distance in a graph: The distance d(i, j)

is simply the shortest path length between vertices i and j. It is easy to define the
length of a given path as simply the sum of edge weights in its edge sequence, and to
understand the concept of a shortest path; however, efficiently determining the actual
shortest path for a vertex pair is a non-trivial computational process. A number of
algorithms exist for finding the shortest path for different types of graphs, the most well-
known being Dijkstra’s algorithm (52) for positively-weighted graphs. For graphs with
possibly negatively-weighted edges, the Bellman-Ford algorithm (53) is often used, with
the caveat that the given graph contains no negative cycles (cycle paths with negative
length). In such cases, the Floyd-Warshall algorithm (54) is needed since it is able to
identify negative cycles.

Being able to calculate distances between vertices leads to another important graph repre-
sentation: the distance matrix, D, containing the distances between all vertex pairs. Sim-
ilarly to the adjacency matrix, each element of the N×N matrix is given by Dij = d(i, j),
the distance between vertices i and j. As an illustrative example, see Figure 2.5. A number
of statistical measures may therefore be introduced based on the elements of the distance
matrix: The graph diameter is the length of the longest path in the graph, max(Dij), and
the mean distance, or characteristic path length, is, as the name suggests,

L =

∑N
i=1

∑N
j=i+1Dij

1
2
N(N − 1)

. (2.4)
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1

2

3

4

5

6

(a) g ∈ G(6, 9)



0 1 2 1 1 1

1 0 2 2 1 1

2 2 0 1 1 3

1 2 1 0 1 2

1 1 1 1 0 2

1 1 3 2 2 0


(b) D(g)

Figure 2.5: A random graph of G(6, 9) and associated distance matrix D(g). Note that
one of the shortest paths between vertices 3 and 6 has been highlighted, but that it is not
unique, as there exist other paths of equal length.

The characteristic path length was introduced by Watts and Strogatz (31), and is of
particular importance to our study of small-world networks; it will be discussed in more
detail in Section 2.3.2. It provides, in the words of Sporns (34), a measure of the global
integration of the network, or, how easy it is for information to flow over long distances
throughout the network.

Local Clustering

Finally, we need to introduce a quantity that measures the strength of local connections
within groups of vertices in the network. To be precise, a neighbourhood Gi(Vi, Ei) ⊂
G(V,E), of vertex i, is the induced subgraph containing all vertices adjacent to vertex i
(See Figure 2.6),

Vi = {j ∈ V | eij ∈ E} (2.5)

Ei = {eij ∈ E | i, j ∈ Vi} . (2.6)

Now, given that a neighbourhood is a graph in its own right, we can apply any of the
measures previously introduced. However, the most important is simply the edge density
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(a) 5-vertex clique in an otherwise circulant

graph.

(b) 15-vertex clique as a complete graph.

Figure 2.6: Neighbourhoods (red) of vertex 1 (black) in graphs of varying connectivities.

of the neighbourhood of vertex i, the local clustering coefficient,

Ci = ρ(Gi) =
Mi

1
2
Ni(Ni − 1)

, (2.7)

where Mi and Ni are the size and order of the neighbourhood. This is the ratio of the size
of a neighbourhood relative to the complete graph of equal order, and gives a measure of
how well connected the neighbours are. If the neighbourhood is complete (as in Figure
2.6a), then Ci = 1 and it is referred to as a clique. By averaging over the clustering
coefficients for each vertex in the graph, we obtain the average clustering, as introduced
by Watts and Strogatz (31), which is fundamental to the study of small-world networks,

C =
1

N

N∑
i=1

Ci . (2.8)
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2.3 Small-world Model

With the theoretical formalism in place, we are now in a position to put it to use in
the construction and analysis of small-world networks. Originally proposed by Watts
and Strogatz (31) as a network model that characterises the small-world phenomenon
in complex systems, such networks have been successfully applied to a wide variety of
complex systems in the biological, social and technological sciences (31; 34).

2.3.1 Construction

Heuristically, a small-world network is one that contains clusters of short-range connec-
tions, with a number of long-range, random, connections serving as bridges between clus-
ters.

Properties

In other words, we want networks that exhibit high average clustering and low character-
istic path length. However another factor is important here, and that is the edge density
of the network; we require networks to have low density, such that neighbourhoods are
small relative to the size of the overall network.

As an example of why this is the case, consider a complete graph in which C = 1 and
L = 1 are maximised and minimised, respectively (see Figure 2.6b. However, due to the
fully-connected topology, it is not representative of a ‘small world’ as it is a single, large,
neighbourhood.

These properties are made more precise in Table 2.1, using the terminology introduced in
Section 2.2.3. Note that these are applicable to any vertices i, j ∈ V in the graph.
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1 Edge Sparsity M � 1
2
N (N − 1)

2 Local Clustering Mi ∼ 1
2
Ni(Ni − 1)

3 Global Integration d(i, j)� N
2

Table 2.1: General properties of a small-world network for any vertices i, j.

Algorithm

Now, how do we construct a network that exhibits these properties? The standard ap-
proach has since become known as the Watts-Strogatz Algorithm (31), and produces a
network as a random variable sampled from a distribution having three degrees of freedom,
namely:

1. Graph order, N

2. Initial vertex degree, K

3. Rewiring probability, p

Given some choice of these three parameters, the algorithm proceeds as follows: Begin
with a 2-regular cycle graph of order N . Next, introduce clustering by adding edges
between successive pairs of vertices i and i + k ∀1 ≤ k ≤ K

2
, producing a K-regular

circulant graph of size M = 1
2
NK. Finally, iterate through each edge in the graph, and

with probability p, rewire it from the original end-vertex to any other vertex, chosen at
random such that a new edge is created that does not already exist in E. This introduces
long-range connections into the network in a parametrically controlled manner.

Note that this is a summary of the overall process; for the full algorithm we refer the
reader to Algorithm 1. As an example of this process, see Figure 2.7.

2.3.2 Analysis

Given this algorithmic approach to constructing a network exhibiting the small-world
phenomenon, how can we analyse how the graph topology depends on the three parameters
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(a) 2-regular cycle graph

with N = 20.

(b) 6-regular circulant graph

with K = 6.

(c) Small-world graph for

p = 0.1

Figure 2.7: Procedure of the Watts-Strogatz Algorithm for constructing a small-world
network.

N , K and p? Or, in other words, how do they affect the edge density, local clustering and
global integration of the network?

What we shall see is that there is an inherent tension between these network properties;
they are not independent (34). Therefore, increasing global integration, above some limit,
necessitates a decrease in clustering, and vice versa; we shall explore this in more detail
in the following sections.

Measures of Small-worldness

In order to do so, we must first introduce a quantitative measure of small-worldness that
can be calculated for a given network. Watts and Strogatz’s original proposal was to
make use of the average clustering, C, and path length, L. Since these quantities are
dependent on the number of rewired edges in the network, what they did was to consider
the normalized clustering and path length, relative to those of the regular network, C̃ =
C(p)
C(0)

and L̃ = L(p)
L(0)

. They found that the small-world effect was most pronounced when
C̃ ∼ 1 and L̃ � 1. Furthermore, they showed that this occurred for a small rewiring
probability, p ∼ 0.1.
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Following on from this work, a number of other quantities have been proposed to classify
small-worldness. These include: the small-world coefficient, σ(p), of Humphries et al (55),

σ(p) =
C(p)

C(1)
× L(1)

L(p)
, (2.19)

the small-world measurement, ω(p), of Telesford et al (35),

ω(p) =
L(1)

L(p)
− C(p)

Clattice
, (2.20)

as well as the network efficiency, E(G), of Latora and Marchiori (56),

E(G) =
1

1
2
N(N − 1)

N∑
i=1

N∑
j=i+1

1

d(i, j)
, (2.21)

Elocal =
1

N

N∑
i=1

E(Gi \ {i}) . (2.22)

Here, 2.19 uses a normalization relative to an equivalent random graph (of equal size and
order), denoted C(1) and L(1). It results in a curve with a peak at the value of p giving
maximal small-worldness, and we can categorise a given network as small-world if σ > 1.

However, Telesford argues that this is too broad a definition, since it can include ‘almost’
random graphs, where p ∼ 1, and therefore proposed 2.20 as an alternative. In this case,
the clustering coefficient is compared to that of an equivalent lattice graph, generated
according to the latticization algorithm of Sporns (33). This produces a monotonically
increasing function of p from −1 (regular) to +1 (random), with ω(p) ≈ 0 corresponding
to max(σ(p)), and small-worldness in the range −0.5 ≤ ω(p) ≤ 0.5.

Finally, the global and local efficiencies, 2.21 and 2.22, were proposed as generalizations
of the average path length and clustering coefficients, respectively. These are based on
the inverse distance, which is particularly useful for weighted and (possibly) disconnected
graphs. Here, E(Gi \ {i}) is the efficiency of the subgraph of neighbours of vertex i, and
also provides a measure of the robustness, or fault tolerance, of the network.
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(a) p = 0.1 (b) p = 0.2 (c) p = 0.4

(d) p = 0.6 (e) p = 0.8 (f) p = 1.0

Figure 2.8: Results of the Watts-Strogatz Algorithm for N = 20, K = 6, and varying p.

Rewiring Probability

It is most instructive to first consider varying the rewiring probability for a given N and
K. In doing so, one observes a clear transition from a completely regular, circulant, graph
for p = 0 to a completely disordered, random, graph for p = 1, in which every edge has
been randomly rewired (see Figure 2.8). In the context of physical systems, this gives us
a controlled mechanism for introducing disordered interactions into an otherwise ordered
network.

Due to the random rewiring process, the algorithm produces one possible realization of the
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ensemble, g ∈ GWS(N,K, p). Since this is a probabilistic process, the number of rewired
edges is a random variable with expectation value, 1

2
NKp.

Now, referring to Figures 2.7 and 2.9, we can observe the tradeoff between clustering
and path length as p is varied between 0 and 1. For small values of p, we have O(1)

rewired edges. Thus, we find that the neighbourhood structure of the graph is relatively
undisturbed, yet even such a few rewired edges are able to significantly reduce the average
path length of the network. For p ∼ 1, we have O(M) rewired edges; the network has lost
its clustering and the average path length has reached a minimum.

Network Size and Order

Having discussed the effect of rewiring probability on the small-world properties of a given
network, we now need to consider the effects of the choice of N and K.

Together, these two parameters affect not only the initial clustering and path length, but
also the edge density, since

ρ(GWS) =
K

N − 1
. (2.23)

This effect is illustrated in Figure 2.10. From 2.10a and 2.10b, we observe that, for a given
N , increasing K leads to a large number of longer range connections, thereby permanently
increasing the clustering, but also decreasing the path length (consider a complete graph
with L = 1) to the point where random rewirings do not have a significant effect.

One could argue that this is a beneficial situation, since in principle we are interested in
networks with high clustering and low path length. However, considering 2.10c, we can
see that even small changes in edge density lead to large changes in the small-worldness
coefficient; indeed, maximising σ requires very sparse graphs, such that neighbourhoods
are small relative to the rest of the network, Ni � N , and therefore most neighbourhoods
are independent of one another. This also ensures that the long-range rewirings have a
larger effect on the global integration of the network, by joining otherwise disconnected
neighbourhoods; something that wouldn’t be observed in a dense network.

Finally, we can see, from 2.10d, that even for a fixed edge density, the small-worldness
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decreases with a subsequent decrease in N and K, to the point where, for N ∼ O(10),
there is no observed peak in small-worldness near p ∼ 1. This is due to smallerK resulting
in lower clustering, and the smaller N resulting in a lower path length, since L(0) ∝ N

but L(1) ∝ lnN (31).

2.4 Summary

In this chapter, we began by reviewing basic concepts of algebraic graph theory, with par-
ticular reference to graph representations and measures. Most importantly, we considered
the adjacency matrix representation, and measures of clustering and distance. We then
used these to describe relevant graph architectures such as the complete, circulant and
random graphs.

These concepts allowed us to formally describe the small-world phenomenon in terms of as-
sociated graph measures; specifically, the edge density, average local clustering coefficient
and average shortest path length. From here we introduced the Watts-Strogatz Algorithm
as a mechanism for constructing such a network based on three parameters: the graph
order, vertex degree and rewiring probability. We then introduced quantitative measures,
such as the small-worldness coefficient, and used these to analyse the dependence of the
network clustering and integration on the three model parameters.

Most significantly, we observed a strong dependence on the network order, N , and cor-
responding edge density, ρ; networks exhibiting the most small-worldness had a very low
edge density, ρ < 0.1, as in Figure 2.10d. This is particularly important for our work,
since obtaining such a low edge density in a network requires a large number of ver-
tices, N ≥ O(102). To see why this is the case, note that from 2.23, N ∝ K

ρ
, and that

K ≥ 2 otherwise the network is a cycle graph with no clustering. Therefore to achieve
just ρ = 0.1 requires N ∼ 200. As we shall discuss in Chapter 4, this poses a significant
computational challenge for simulating a small-world network of quantum particles, due
to the exponential growth in the size of the network Hilbert space.
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Algorithm 1 Watts-Strogatz Algorithm
1. Define parameters:

Vertex number: N ∈ {n ∈ Z : 3 ≤ n} (2.9)

Vertex degree: D ∈ {d ∈ 2Z : 2 ≤ d ≤ N − 1} (2.10)

Rewiring probability: P ∈ {p ∈ R : 0 ≤ p ≤ 1} (2.11)

2. Define network as a simple, undirected, D-regular, cycle graph of N vertices:

Graph: G = {V,E} (2.12)

Vertex Set: V = {v ∈ ZN} (2.13)

Edge Set: E =

{
{v, v + d} ∀ v, v + d ∈ V : 1 ≤ d ≤ D

2

}
(2.14)

3. For each edge length, 1 ≤ d ≤ D
2

(a) For each vertex, 1 ≤ v ≤ N

i. Define a random variable of real numbers on the unit interval, XR : ΩR →
R:

ΩR ≡ {r ∈ R : 0 ≤ r ≤ 1} (2.15)

ii. Sample ωR ∈ ΩR randomly and uniformly.
iii. If XR(ωR) ≤ P , then rewire with probability P :

A. Define the random variable of all edges not in the graph, X : ΩE → Z2,
where:

ΩE ≡ {{v, ω} /∈ E : ω ∈ V } (2.16)

B. Sample an edge ωE ∈ ΩE randomly and uniformly
C. Remove the element {v, v + d} from the edge set,

E → E ′ = E \ {v, v + d} (2.17)

D. Add the element {v, ωE} to the edge set,

E → E ′ = E ∪ {v, v + ωE} (2.18)
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Figure 2.9: Small-worldness parameters as functions of the rewiring probability, averaged
over 50 realizations for N = 1000 and K = 20. The vertical dashed lines at p = 0.1

indicate the value at which the small-worldness is maximised, according to Watts and
Strogatz. The horizontal lines in 2.9c and 2.9d show the regions in which the authors
classify the networks as small-world.
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Figure 2.10: Small-worldness parameters as functions of the rewiring probability, averaged
over 50 realizations, showing dependence on the number of vertices and edges in the
networks.
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Chapter 3

Diagnostics of Quantum Chaos

...it may happen that small differences in the initial conditions

produce very great ones in the final phenomena.

Henri Poincaré in Science and Method (57)

3.1 Introduction

As an early proponent of chaos, Poincaré is widely attributed as the first to make the
observation that certain, nonlinear, systems exhibit ‘sensitive dependence on initial con-
ditions’, which is now known to be the defining feature of chaos in classical dynamical
systems (58). Informally, this is the statement that two trajectories with infinitesimally
close initial conditions, evolving in time in a system with chaotic dynamics, will diverge
exponentially such that their initial relationship cannot be reconstructed. The implication
is that there exist classes of classically deterministic systems in which long-term prediction
is impossible.

The modern foundations of chaos theory are generally attributed to the American math-
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ematician and meteorologist Edward Lorenz, following his 1963 discovery of the strange
attractor in toy models of atmospheric weather systems (3), as well as his 1972 talk ‘Pre-
dictability; Does the Flap of a Butterfly’s wings in Brazil Set Off a Tornado in Texas?’
(4).

Early work on quantum chaos leading up to the turn of the century focused on quantum
mechanical systems whose corresponding classical analogues are chaotic; the aim being to
understand the emergence of deterministic (classical) chaos from the underlying quantum
mechanisms (5; 6). Notable examples include the single-particle Hamiltonian ‘billiards’
models, such as those of Sinai (59) and Bunimovich (60). Berry (6) went so far as to
assert that ‘there is no quantum chaos, in the sense of exponential sensitivity to initial
conditions...’, and suggested such studies be termed quantum chaology.

Most recently, there has been a significant confluence of interest within the condensed
matter, high energy theory, and even theoretical computer science communities, regarding
chaotic behaviour in strongly-correlated quantum many-body systems; the focus of our
current work. These are systems that do not have corresponding classical analogues, or
are far from (semi-)classical regimes; much emphasis has been placed on identifying novel
signatures of chaos in such systems, which are of central importance to our analysis of
quantum spin networks.

In this chapter, we introduce the diagnostics representing the current state of the art in
this rapidly evolving field. Section 3.2 discusses approaches from random matrix theory
to studying the eigenvalue spectra of quantum systems. In section 3.3, we introduce
a number of modern diagnostics of quantum chaos that have received much worldwide
attention in recent years, and are used to identify chaotic behaviour at different time and
energy scales.

3.2 Spectral Statistics

The first studies of large, random, matrices, pioneered by Wigner (61) and Dyson (62),
were attempts at modelling the energy levels of heavy atomic nuclei. Since then, random
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CHAPTER 3. DIAGNOSTICS OF QUANTUM CHAOS

matrix theory has been applied to many fields ranging from number theory to statistical,
and condensed matter, physics; see Mehta’s seminal text on the subject, to which we refer
in the following discussion (40).

In trying to understand the large Hamiltonian matrices describing complex nuclei, Dyson
introduced a class of random matrices, known as the Gaussian ensembles; the most-studied
models being:

1. The Gaussian Orthogonal Ensemble (GOE) of N × N real, symmetric matrices;
representing Hamiltonians with time-reversal symmetry.

2. The Gaussian Unitary Ensemble (GUE) of N × N complex, Hermitian, matrices;
representing Hamiltonians without time-reversal symmetry.

3. The Gaussian Symplectic Ensemble (GSE) of N ×N quaternionic, Hermitian, ma-
trices; representing Hamiltonians with time-reversal, but without rotational, sym-
metry.

In each of these ensembles, each distinct element Mij of the N × N matrix M(N) is a
random variable independently and identically distributed (iid) according to a normal
(Gaussian) distribution, Mij ∼ N (µ, σ2), generally with zero mean (µ = 0) and unit
variance (σ2 = 1). Furthermore, each element is either real (GOE), complex (GUE) or
quaternionic (GSE), and the matrices themselves are invariant under orthogonal (GOE),
unitary (GUE) or symplectic group (GSE) conjugation. Physically, this means that the
ensembles model systems with their respective aforementioned symmetries. As examples
of each of these, consider the matrices shown in 3.1. Note that the quaternionic form of
the 2N × 2N symplectic matrix in 3.1c is given by the block structure(

z0 + iz1 z2 + iz3

iz3 − z2 z0 − iz1

)
,

where zi are N×N matrices, with z0 real symmetric and z1, z2 and z3 real anti-symmetric.

Wigner’s insight was that these matrix ensembles represent universal features of generic
quantum systems having sufficiently large Hamiltonians. In order to discuss this, we
first introduce some terminology. Given a generic quantum system, we can describe the
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-0.525304 -0.405722 -0.523965 -0.951493
-0.405722 -1.46075 1.1065 -0.247524
-0.523965 1.1065 1.82595 1.02336
-0.951493 -0.247524 1.02336 -0.581046

(a) GOE(4)

-1.62848 + 0. ⅈ 0.522773 + 0.993918 ⅈ -0.472166 - 0.334425 ⅈ 0.15871 + 0.860226 ⅈ

0.522773 - 0.993918 ⅈ -0.235212 + 0. ⅈ 0.183185 + 0.0599916 ⅈ -1.21941 + 0.366297 ⅈ

-0.472166 + 0.334425 ⅈ 0.183185 - 0.0599916 ⅈ 0.720626 + 0. ⅈ 0.076883 - 0.698327 ⅈ

0.15871 - 0.860226 ⅈ -1.21941 - 0.366297 ⅈ 0.076883 + 0.698327 ⅈ -0.0868632 + 0. ⅈ

(b) GUE(4)

-0.580117 + 0. ⅈ -0.479315 - 0.631202 ⅈ 0. + 0. ⅈ 0.146602 - 0.435651 ⅈ

-0.479315 + 0.631202 ⅈ 1.05741 + 0. ⅈ -0.146602 + 0.435651 ⅈ 0. + 0. ⅈ

0. + 0. ⅈ -0.146602 - 0.435651 ⅈ -0.580117 + 0. ⅈ -0.479315 + 0.631202 ⅈ

0.146602 + 0.435651 ⅈ 0. + 0. ⅈ -0.479315 - 0.631202 ⅈ 1.05741 + 0. ⅈ

(c) GSE(4)

Figure 3.1: Examples of 4× 4 random matrices drawn from the Gaussian ensembles.

dynamics, in the Heisenberg representation, as an eigenvalue problem using the associated
Hamiltonian matrix,

Hψj = λjψj , (3.1)

with energy spectrum,

σ(H) = {λj | 1 ≤ j ≤ N} , (3.2)

where the number of eigenvalues and eigenvectors, N , is equal to the dimension of the
system Hilbert space. We use λj ≡ Ej interchangeably to represent the eigenvalue of the
j-th energy level.

This is standard linear algebra, and we may also apply it to any random matrices M(N) ∼
GXE(N) (the X is a placeholder for either O, U or S of the aforementioned ensembles) we
may generate. Computing a histogram (counting the number of eigenvalues within some
range) of the spectrum σ(M), we obtain the eigenvalue density, which we denote ρ(λ).

This eigenvalue density of the Gaussian matrices was observed to follow what is now
referred to as the Wigner semi-circle distribution, given by

ρ(λ; r, a) =


2
πr

√
1− (λ−a

r
)2 |λ− a| ≤ r

0 |λ| > r
, (3.3)

where all the eigenvalues are found in the compact region centered at some a and bounded
by some a± r; see Figure 3.2a for an example, which is indeed semi-circular.

However, this distribution is insufficient to characterise specific system behaviour; it does
not differentiate between the three ensembles, and so the same semi-circular density is ob-
served regardless of the symmetries in the system. Therefore, to obtain more information
from the spectra, Wigner introduced the eigenvalue spacing distribution, by ordering the
eigenvalues from smallest to largest, 0 ≤ λ1 ≤ . . . ≤ λN , and considering the distances
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between consecutive (neighbouring) energy levels, sj = λj+1 − λj, resulting in

P (s,N) =
1

N − 1

N−1∑
j=1

δ(s− sj) . (3.4)

It is important that, at this point, we normalise the distribution by unfolding the spec-
trum relative to the mean spacing, 〈s〉 = 1

N

∑N
j=1 sj. In other words, when studying the

spectrum of some Hamiltonian matrix, and wanting to compare it to that of an appro-
priate random matrix, we are only interested in the relative spacing distribution. We are
not concerned with absolute differences in the spacings, and so by dividing by the mean
spacing for the distribution, we ensure that we are able to correctly compare with that
of a Gaussian random matrix. More precisely, this is done to remove finite-size effects
on the local density of states (15), so that the unfolded spacing distribution of a generic
Hamiltonian may be compared directly to that of one of the Gaussian ensembles.

Now, if the spacings for a given system are completely random and uncorrelated, one
would expect to see a Poisson distribution,

PPoisson(s) = e−s . (3.5)

However, Wigner found that, for the Gaussian matrices, the spacings were in fact corre-
lated, and followed distributions of the form,

Pβ(s) = Cβs
βe−aβs

2

, (3.6)

now known as the Wigner Surmise, or Wigner-Dyson distribution, following Dyson’s
classification as follows: β = 1, 2, 4 for GOE, GUE and GSE, respectively, and Cβ and
aβ are normalisation constants, resulting in:

PGOE(s) =
π

2
s1e−

π
4
s2 , (3.7)

PGUE(s) =
25

π2
s2e−

4
π
s2 , (3.8)

PGSE(s) =
218

36π3
s4e−

26

32π
s2 , (3.9)

as shown in Figure 3.2b. Therefore, by calculating the spacing distribution for the (un-
folded) spectrum of a given Hamiltonian matrix, we can calculate the goodness-of-fit to
each of these distributions, and find the model that most accurately represents the system.
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Figure 3.2: Graphs illustrating the distribution of eigenvalues and eigenvalue spacings in
Gaussian random matrices.

However, besides telling us about the presence of time-reversal or rotational symmetries
in the system, what more can we learn from this fitting, and what does a Poisson-like
distribution imply? Most significantly, in the context of semiclassical quantum chaology,
are two conjectures which relate the eigenvalue spacing distribution of the underlying
quantum system to the regular or chaotic features of the corresponding classical dynamics
(63); the Berry-Tabor (BT) and Bohigas-Giannoni-Schmidt (BGS) conjectures, proposed
in 1977 (64) and 1984 (65), respectively.

Conjecture 3.1. Berry-Tabor Conjecture If the corresponding classical dynamics is
completely integrable, then P (s) exists and is equal to the waiting time between consecutive
events of a Poisson process, P (s) = e−s (63).

Conjecture 3.2. Bohigas-Giannoni-Schmidt Conjecture If the corresponding clas-
sical dynamics is not completely integrable, i.e. chaotic, then P (s) exists and is equal to
the consecutive level spacing distribution of a suitable Gaussian ensemble of Hermitian
random matrices (63).

The physical argument for this difference between Poisson-like (integrable), and random
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matrix-like (chaotic) behaviour is as follows (66): If the spacings between energy levels
are uncorrelated, then any transitions between eigenstates are possible and depend only
on the (negative exponential of the) change in energy, as for a Poisson process, and the
system is said to be integrable.

If, on the other hand, the spacing distribution, P (s), peaks at s 6= 0 and P (s→ 0)→ 0, as
for the Gaussian ensembles, this is indicative of level repulsion, or avoided level crossings.
In this case, small energetic transitions of the eigenstates are avoided, there is not an
infinite number of conserved charges, and the system is said to be non-integrable. Again,
Figure 3.2b indicates this behaviour; notice how the Gaussian ensemble distribution peak
near s ≈ 1, and drop to zero at s = 0, indicative of level repulsion of small energy
separations.

Although still without formal proof, the BGS conjecture has been verified experimentally,
and computationally, in a large number of systems, to the point where it is widely regarded
as a defining signature of quantum chaos (67).

3.2.1 r-Statistic

The spectral unfolding method has proven successful in a large number of studies of semi-
classical systems. However, recent work (66; 68) has argued that this method introduces
inaccuracies in strongly-correlated many-body systems, due to (i) the appearance of band
structures in the density of states, as well as (ii) exponential growth of the system Hilbert
space.

As an example of (i), consider Figure 3.3. Notice the semi-circular form of the GUE
density of states, whereas the random spin network contains distinct bands of high and
low density. Regarding point (ii), adding a single particle to such a system doubles the
number of eigenvalues, making it difficult to compare systems that have similar numbers of
particles (and, intuitively, very similar physics), but very different eigenvalue distributions.

For this reason, the authors mentioned above propose using the ratio of consecutive spac-
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(see Chapter 4).

Figure 3.3: Graphs illustrating the structure of the density of states for the GUE and a
random spin network of equal size.

ings for such systems,

rj =
min{sj, sj−1}
max{sj, sj−1}

(3.10)

= min{ sj
sj−1

,
sj−1
sj
} . (3.11)

This quantity, colloquially referred to as the r-statistic, was introduced by Oganyesan and
Huse (69) as a means of circumventing the unfolding procedure, since the ratio of spacings
is independent of the mean spacing. Significantly, the distribution P (r) has been shown to
yield more precise results than P (s) in comparison with Gaussian ensemble distributions,
for many-body quantum systems.

Bogomolny et al (68) then went on to derive analytic expressions for the distributions of
the Gaussian ensembles (see 3.7 - 3.9) in terms of the r-statistic,

Pβ(r) =
1

Zβ

(r + r2)β

(1 + r + r2)1+(3/2)β
, (3.12)
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with β = 1, 2, 4 as before, and Zβ normalisation constants:

ZGOE =
23

33
,

ZGUE =
22π

39/2
,

ZGSE =
22π

313/2
.

From here it is relatively straightforward to test whether a system is chaotic (according
to the BGS conjecture), by computing the goodness-of-fit of the difference, δP (r) =

Pnum(r)− Pβ(r), between the numeric results and the analytic predictions of the Wigner
surmise. This is, in principle, very similar to the fitting procedure discussed for the spacing
distribution, but simply avoids the unfolding procedure.

A subsequent method for classifying the system dynamics as either Poisson-like or random
matrix-like was proposed by Kollath et al (66), and utilised in further studies, such as (15).
This approach is based on calculating the mean r-statistic, 〈r〉, for a given Hamiltonian,
and comparing to the expectation values of the pure distributions:

E(rPoisson) = 2 ln 2− 1 ≈ 0.386 ,

E(rGOE) = 4− 2
√

3 ≈ 0.536 ,

E(rGUE) =
2
√

3

π
− 1

2
≈ 0.603 ,

E(rGSE) =
32
√

3

15π
− 1

2
≈ 0.676 .

This gives a more systematic approach, and one that is particularly suited to probing
systems that exhibit an integrability-chaos transition, since we may plot 〈r〉 as a function
of the disorder parameter and observe the transition. Ideally, we would like to observe
a transition as shown in Figure 3.4. Here, we begin with an integrable system, having
a Poisson-like 〈r〉, at small values of some parameter that introduces disorder into the
system. As this parameter grows, we can see a transition from Poisson-like to GUE-like,
in this case.
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Figure 3.4: Hypothetical plot of 〈r〉 as a function of a parametric disorder term in a given
system.

3.3 Time-Dependent Signatures

Analysis of the spectral statistics of the system Hamiltonian matrix provides insight
into the behaviour of the system in the long-time limit, since the matrix itself is time-
independent and encodes all the system dynamics in the energy eigenstates.

However, there has been significant recent interest in studying the early-time behaviour of
strongly-correlated quantum systems; the aim being to understand quantum information
scrambling and its relation to black hole physics. This work was directly influenced by
Kitaev’s introduction of the SYK model (20), and his connection of the (growth rate of)
out-of-time-order correlation functions (OTOC) to Lyapunov exponents of classical chaos
(70). For this reason, we now introduce the two diagnostics that are most studied in this
context, the OTOC and spectral form factor (SFF).

3.3.1 Out-of-time-order Correlation Functions

First introduced by Larkin and Ovchinnikov in 1969 in the context of superconductivity
(37), for a single particle in a chaotic potential, the four-point OTOC has been the subject
of significant research interest in recent years, see (7; 18; 20; 23; 39; 42; 47; 70; 71; 72; 73;
74; 75; 76) amongst many others.
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This interest was precipitated by the relation to the butterfly effect of classical chaos and
the Loschmidt echo of quantum systems, particularly following the MSS bound on the
growth of chaos in thermal quantum systems (18). Most important was the observation
that the OTOC could be used to show that the SYK saturates this MSS bound, and is in
fact a maximally chaotic system.

Given a set of local operators, V and W in some Hilbert space H, the OTOC is defined
by the expectation value of the squared commutator,

Cβ(t) ≡ −
〈
[W (t), V (0)]2

〉
, (3.13)

= − 1

Z

2N∑
n=1

e−βEn 〈ψn|[W (t), V (0)]2|ψn〉 , (3.14)

where 〈· · ·〉 represents the thermal average at inverse temperature β = 1
T
, Z =

∑2N

n=1 e
−βH

is the thermal partition function of the Hamiltonian with 2N eigenstates given by En and
ψn.

Now, what is the physical significance of this quantity, and how is it related to a Lyapunov
exponent? While there is not a purely quantum notion of exponential divergence of
trajectories in phase space as in classical mechanics, a heuristic argument made by MSS
(18), and summarised by Hashimoto et al (39), is as follows: Consider W (t) = x(t) and
V (0) = p(0) as position and momentum operators, respectively. Then, in the semiclassical
limit, we may replace the commutator with the Poisson bracket

[x(t), p(0)]→ i~{x(t), p(0)}

= i~
δx(t)

δx(0)

∼ eλt

giving a Lyapunov exponent of λ for a classically chaotic system. Thus, the squared
commutator should grow as ∼ ~2e2λt. It is worth noting that, unlike in a classical system,
the OTOC does not grow without bound, but saturates at the Ehrenfest time, tE, beyond
which the wave function has spread throughout the entire system, and cannot grow any
further. In this regard, the MSS bound proposes an upper limit on the growth of chaos
as λ ≤ 2πkBT/~ (18).
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Now, how do we go about calculating this quantity in a computationally efficient manner?
Expanding the commutator, and writing W = W (t) and V = V (0),

[W,V ]2 = (WV − VW )2

= (WV − VW )(WV − VW )

= WVWV + VWVW −WV VW − VWWV

Since the operators W and V are both Hermitian and Unitary,

WV VW = I = VWWV

∴ [W,V ]2 = WVWV + VWVW − 2I

Substituting into (3.14),

Cβ(t) = − 1

Z

2N∑
n=1

e−βEn 〈ψn|WVWV + VWVW − 2I|ψn〉

=
1

Z

2N∑
n=1

e−βEn{ 〈ψn|2I|ψn〉 − 〈ψn|WVWV |ψn〉 − 〈ψn|VWVW |ψn〉}

=
1

Z

2N∑
n=1

e−βEn{2− 〈ψn|(WVW )V |ψn〉 − 〈ψn|V (WVW )|ψn〉} (3.15)

Noting that the term WVW is also Hermitian and Unitary, and considering the third
term in (3.15), we have that

〈ψn|V (WVW )|ψn〉 = 〈ψn|(WVW )V |ψn〉∗

This is the complex-conjugate of the second term in (3.15). Therefore, written in terms
of the real and imaginary components,

〈ψn|(WVW )V |ψn〉 = Re( 〈ψn|(WVW )V |ψn〉) + i Im( 〈ψn|(WVW )V |ψn〉)

〈ψn|(WVW )V |ψn〉∗ = Re( 〈ψn|(WVW )V |ψn〉)− i Im( 〈ψn|(WVW )V |ψn〉)

Thus, (3.15) reduces to

Cβ(t) =
1

Z

2N∑
n=1

e−βEn 2[1− Re( 〈ψn|W (t)V (0)W (t)V (0)|ψn〉)] (3.16)
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Two further simplifying approximations may be made by taking the (i) high temperature,
and (ii) large N limits, as follows. Since we are interested in the fastest possible growth
of C(t), the infinite temperature limit is reasonable; taking β = 0 results in Z = 2N and
e−βEn = 1, therefore

C0(t) =
1

2N

2N∑
n=1

2[1− Re( 〈ψn|W (t)V (0)W (t)V (0)|ψn〉)] (3.17)

Now, it is still computationally intensive to sum over all 2N eigenstates of H (1). Ap-
proximation (ii) to (3.17) may be made by employing the notion of quantum typicality
in the large N limit (77): Given some general system, properties of the full statistical
ensemble can be well-approximated by those of a single, random, pure state, |ψ〉. Thus,
the expectation value term in (3.17) may be written as

1

2N

2N∑
n=1

〈ψn|Ô|ψn〉 =
1

2N
〈ψ|Ô|ψ〉+ ε(|ψ〉) (3.18)

⇒
∣∣∣Tr
(
Ô
)
− 〈ψ|Ô|ψ〉

∣∣∣ = 2N |ε(|ψ〉)| (3.19)

where ε(|ψ〉) is the error associated with the approximation. This concept is made precise
by Levy’s Lemma (78; 79),
Lemma 3.3.1 (Levy’s Lemma). Given a Lipschitz-continuous function f : Sd → R
defined on the d-dimensional hypersphere, Sd, and a point ψ ∈ Sd chosen uniformly at
random,

P [|〈f〉 − f(ψ)| ≥ ε] ≤ 2 exp

{
−(d+ 1)ε2

9π3η2

}
(3.20)

where η is the Lipschitz constant of f , given by η = sup |∇f |.

Taking H ∼ Sd, with states ψ ∈ H, and local operators that satisfy Lipschitz-continuity,
the error between 〈f〉 and the function value of a randomly chosen state, f(ψ), decreases
exponentially as a function of the Hilbert space dimension, d = 2N . Therefore, (77; 80)

lim
d→∞

Tr
(
Ô
)

= 〈ψ|Ô|ψ〉 (3.21)

Therefore, in the high-temperature and large Hilbert space dimension limits,

C0(t) ≈ 2[1− Re( 〈ψ|(W (t)V (0)W (t)V (0)|ψ〉)] (3.22)

= 2[1− Re(〈ψ2|ψ1〉)] (3.23)
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where the second line is obtained by simply defining the inner product of the operated
states:

|ψ1〉 = V (0)W (t) |ψ〉

|ψ2〉 = W (t)V (0) |ψ〉

Furthermore, in the Heisenberg representation, the operators themselves evolve by the
action of the system Hamiltonian, H, as follows, W (t) = eiHtW (0)e−iHt. By diagonali-
sation we can decompose the Hamiltonian into the eigenvector and (diagonal) eigenvalue
matrices, Q and D, respectively: H = QDQ†. Thus the operator evolution can be written
as W (t) = Q†eiDtQW (0)Qe−iDtQ†, and therefore

|ψ1〉 = V (0)Q†eiDtQW (0)Qe−iDtQ† |ψ〉 (3.24)

|ψ2〉 = Q†eiDtQW (0)Qe−iDtQ†V (0) |ψ〉 (3.25)

3.3.2 Spectral Form Factor

While the OTOC has proven to be an effective diagnostic of early-time chaos and informa-
tion scrambling in certain models, previous studies of systems able to transition between
integrability and chaos (81), have uncovered a tension between the OTOC and typical
RMT diagnostics. In part, this is a reflection of the nature of the two sets of tools; the
OTOC captures early time, quantum mechanical features of the model whereas RMT cap-
tures late time, statistical features. To reconcile these two observations, in the context of
black hole information scrambling, the authors of (1) proposed the SFF as an alternative
diagnostic. As the analytically-continued thermal partition function, the SFF, g(t, β), has
two desirable properties: (i) at late times it displays RMT behaviour and (ii) because it
has a quantum mechanical flavor, it is closer to the OTOC description of quantum chaos
than standard RMT measures.

Concretely, we compute the annealed SFF (1),

g(t; β) =
〈|Z(β, t)|2〉J
〈Z(β)〉2J

(3.26)
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where 〈·〉J is the disorder-averaged expectation value over the ensemble of randomly con-
nected networks, and the partition functions are given by:

Z(β, t) = Tr
(
e−βH−iHt

)
, (3.27)

Z(β) = Tr
(
e−βH

)
. (3.28)

The notion of annealing is imposed by taking the disorder average over the numerator
and denominator separately; this may by compared to the quenched SFF, in which the
disorder average is taken over the ratio,

g(t; β) =

〈∣∣∣∣Z(β, t)

Z(β)

∣∣∣∣2
〉
J

(3.29)

As argued by Cotler et al (1), the advantage of using the annealed SFF is that it only
requires a finite number of replicas in analytic calculations, whereas the quenched SFF
requires an arbitrary number of replicas. However, in the infinite temperature (β → 0)
limit, Z(β = 0) =

∑2N

n=1 1 = 2N and both the annealed and quenched SFFs become equal,
reducing to

g(t; 0) =
1

2N
〈|Z(0, t)|2〉J . (3.30)

Now, we may simplify the calculation of the magnitude of the partition function, |Z(0, t)|2,
so as to make it computationally tractable:

|Z(0, t)|2 = Z(0, t)Z(0, t)†

= Tr
(
e−iHt

)
Tr
(
eiHt

)
=

2N∑
m=1

2N∑
n=1

〈ψn|e−iHt|ψn〉 〈ψm|eiHt|ψm〉

=
2N∑
m=1

2N∑
n=1

e−iEnt 〈ψn|ψn〉 e−iEmt 〈ψm|ψm〉

=
2N∑
m=1

2N∑
n=1

ei(Em−En)t .

Here, the En and Em are the 2N eigenvalues of the Hamiltonian matrix, H. Since the
double summation considers all pairwise differences between the eigenvalues twice, we
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Figure 3.5: Log-log plot of g(t; β = 5) for random matrices sampled from the GUE of
dimension 212. Image reproduced from (1).

may simplify g(t; 0) to:

g(t; 0) =
1

2N

〈
2N + 2

2N−1∑
m=1

2N∑
n=m+1

cos (Em − En)t

〉
J

(3.31)

Now that we are able to calculate the SFF efficiently using just the Hamiltonian eigenval-
ues, we may consider how it can be used to diagnose (potentially) chaotic behaviour of a
many-body system. For illustrative purposes, consider the SFF for GUE random matrices
in Figure 3.5.

In the case of a chaotic system, the SFF exhibits several characteristics, and most impor-
tantly, three primary regimes: a smooth dip, a linear ramp and a constant plateau. The
dip is smooth, with minimal noise or random fluctuations, and decreases to a minimum
at the dip time, td. From this point the curve begins to fluctuate, but the size of such
fluctuations is attenuated by the disorder averaging. The length of the ramp is then given
by the difference between the dip time and the plateau time, tp, at which the curve reaches
an almost constant value, the long-time average of g(t; β).

Now, what do these quantities tell us about the behaviour of the system? While the
eigenvalue spacing distribution from RMT gives information on the nearest-neighbour
spacings, at small energy separations, the SFF probes correlations between all energy
levels, and therefore gives information about larger energy separations (1).
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In particular, the t parameter in g(t) determines the scale of energy differences being
probed; the origin of the ramp at intermediate timescales is due to level repulsion between
well-separated eigenvalues, an indicator of chaos similar to that observed at small energy
differences in the nearest neighbour spacing distribution. Specifically, Cotler et al observed
that, for chaotic systems such as the SYK model, td and tp both increase with system
size N , but that tp grows faster than td, leading to the length of the ramp growing
proportionally to N . Additionally, at late times beyond tp only individual energy levels,
En = Em, have an effect on g(t), giving the height of the plateau (as the late-time average
value of g(t)), in terms of the eigenvalue degeneracies, providing information on internal
symmetries of the system,

〈g(t)〉t =

∑
E N

2
E

2N
, (3.32)

where NE is the degeneracy of eigenvalue E.

3.4 Summary

In summary, we have introduced several state of the art methods for diagnosing chaos in
many-body quantum systems. We began with a discussion of the origins of quantum chaos
from random matrix theory, as first studied by Wigner, Dyson, Berry and others. This led
us to consideration of the statistical distribution of energy levels as a primary signature
of chaos, in the form of the nearest-neighbour eigenvalue spacing distribution; the central
conclusions here being the Berry-Tabor and Bohigas-Giannoni-Schmit conjectures: that
the eigenvalue statistics of integrable systems follow a Poisson distribution, while those
of chaotic systems follow the Wigner surmise distributions of Gaussian random matrices.
This led to the notion of the r-statistic as a more precise measure of the eigenvalue
statistics for systems that may transition between integrability and chaos.

From here, we considered two modern signatures that have been introduced recently; the
out-of-time-order correlator and the spectral form factor. The former is a fully quantum
measure that captures the growth of system-wide correlations over time, and therefore
provides information on early-time chaotic behaviour and quantum information scram-
bling. Due to its relation to the Lyapunov exponent of classical chaos, it is understood
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that chaotic systems experience exponential growth of the OTOC at early times. This
has been studied extensively since the introduction of the SYK model in 2015. However,
further studies have also uncovered a tension between the OTOC and RMT results for
known systems, which lead to the introduction of the spectral form factor as a measure
over intermediate timescales that captures both quantum and statistical effects over larger
energy scales.
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Chapter 4

Quantum Small Worlds

We must know. We will know!

David Hilbert (82)

4.1 Introduction

This chapter introduces the central results of this thesis. The topology of a quantum
spin network is generalized using concepts from graph theory. In particular, the Watts-
Strogatz Algorithm is utilised to construct a small-world network of quantum spins. The
evolution of the system is then analysed using tools from quantum chaos theory. The
generalized model is verified by reproducing known spin systems, including the Ising and
Heisenberg models.
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Programming language Wolfram Mathematica 11.3 (8 local kernels)
Operating system Windows 10 Home 64-bit
Processor (CPU) Intel Core i7-4720HQ @ 2.6GHz (8 logical cores)
Memory (RAM) Asus 16384MB DDR3L @ 1.6GHz (2× 8192MB)
Memory (SSD) Samsung 850 EVO 250GB @ 540/520 MB/s R/W

Table 4.1: System hardware and software specifications.

4.2 Methodology

In this section, we detail the computational procedure followed in modeling and analysing
our quantum small world networks. For reference, all simulations were performed on a
system having the following hardware and software specifications:

Due to exponential dependence of the Hamiltonian matrix size on the number of parti-
cles in the system, simulating many-body quantum systems is a significant technological
challenge for classical computing. As such, state-of-the-art methods for maximising sys-
tem size typically involve a combination of: (i) approximation techniques for reducing the
matrix size, using (ii) statically-typed, compile-time programming languages, running on
(iii) massively-parallel high-performance or supercomputing clusters.

Therefore, it would be reasonable to question the use of the system whose specifications
are described in Table 4.1. The ideal scenario would be to run all computations in C,
using the Intel Math Kernel Library (MKL) and Message Passing Interface (MPI, for
parallel computing), on a local cluster such as the Centre for High-Performance Computing
(CHPC) or UCT High-Performance Computing (HPC) cluster.

However, achieving this performance has significant developmental overheads, particularly
since this is a novel project for the QGaSlab research group. Hence, as a preliminary
investigation, it was decided that the rapid prototyping and convenience afforded by a
dynamically-typed, runtime, language, such as Mathematica on a local machine, were
more important than the ability to access (marginally) larger system sizes.

Regarding the actual code implementation, a Mathematica package was written to en-
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capsulate and organise the necessary algorithms and functions; the file, “QuantumSmall-
Worlds.m” is attached and discussed in the following subsections.

4.2.1 Network Initialisation

What are the degrees of freedom of the system, and what variables must we fix? From
the Watts-Strogatz algorithm, the network topology is defined by the three variables
for number of particles, rewiring probability and neighbour coupling length, N , p and
k, respectively. These define our graph adjacency matrix, A, that can be fed into the
spin interaction Hamiltonian. Subsequently, we can introduce additional disorder by:
(i) weighting each edge randomly by sampling from some distribution, (ii) considering
anisotropy in the interactions in each direction;

Jµ = {JxAxij, JyA
y
ij, J

zAzij} (4.1)

Now, as will be shown in the following subsection, the size of the Hamiltonian matrix
scales as 2N ×2N with the N number of particles. This represents a significant bottleneck
due to the memory and computational requirements in storing and manipulating matrices
of this size.

As an example, a Hamiltonian of 15 particles contains 215×215 ∼ O(109) elements, each of
which is a complex number of 2 64-bit floating point numbers. This equates to a memory
requirement of 16GB, which increases by a factor of 4 with each additional particle added,
and exceeds the capabilities of our current hardware, without considering the additional
memory needed to manipulate and perform the numerical eigenvalue decomposition. For
this reason, we are in principle limited to systems of N ≤ 14, and realistically to N < 12

for reasonably time-efficient computations.

Now, this poses a problem, since as we saw in Chapter 2, we ideally need N > 200 to
maximise the small-worldness of the network. Furthermore, for systems of N ∼ O(10),
we have only a small number of O(10) edges that may be rewired, meaning that the
system becomes too sensitive to the potential variations in using a probabilistic rewiring
parameter p. For this reason, we propose a slight modification to the Watts-Strogatz
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algorithm, replacing the rewiring probability with a parameter r that instead fixes the
number of rewirings applied to the network. This allows us to directly control the number
of random couplings from 0 ≤ r ≤ NK.

4.2.2 Hamiltonian Construction

Having defined the connectivity, we must next assign a spin particle to each site in the
network. It is possible to consider any spin-s particle, given by the spin matrices:

Definition 4.1. We define the d-dimensional spin operators Sx,Sy,Sz as follows, where
s is the particle spin and bj ≡

√
(s+ j)(s+ 1− j), and we set ~ = 1 (83):

Sx =
1

2

0 bj 0 0 · · · 0

bj 0 bj−1 0 · · · 0

0 bj−1 0 bj−2 0
...

... 0 0

0 · · · b−j+1

0 · · · 0 0 b−j+1 0




(4.2)

Sy =
1

2

0 −ibj 0 0 · · · 0

ibj 0 −ibj−1 0 · · · 0

0 ibj−1 0 −ibj−2 0
...

... 0 0

0 · · · −ib−j+1

0 · · · 0 0 ib−j+1 0




(4.3)
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Sz =

s 0 0 0 · · · 0

0 s− 1 0 0 · · · 0

0 0 s− 2 0 0
...

... 0 0

0 · · · 0

0 · · · 0 0 0 −s




(4.4)

Note that Sz is diagonal in this choice of basis; this is referred to as the computational
basis (84). In other words, the eigenvectors of Sz form an orthonormal basis for the space
Hd, eij = δij, giving the j-th elements of the i-th eigenvector, with associated eigenvalues
αi = Szii.

However, for the purposes of this investigation, we consider the simplest case using two-
level (qubit) spin particles at each site, with spin operators given by the Pauli matrices:

σ1 =

[
0 1

1 0

]

σ2 =

[
0 −i
i 0

]

σ3 =

[
1 0

0 −1

]

Then, each spin matrix operating at site i is defined by repeated tensor products with the
identity matrix, σ0 ≡ I2, as follows (~ = 1):

Sµi =
i−1⊗
n=1

σ0 ⊗ σµ ⊗
N⊗

n=i+1

σ0 (4.5)

Spin-Exchange Interaction

The two-point spin exchange interaction between two particles is simply given by the
matrix product of the associated spin operators; Sµi × Sµj . Therefore, we may define the
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spin exchange Hamiltonian as follows:

Hs−e =
n∑
i=1

n∑
j=1

3∑
µ=1

JµijS
µ
i S

µ
j (4.6)

where the elements of the coupling matrix, Jµij, encode the adjacency matrix and edge
weightings, as described above.

External Field Interaction

We may now introduce an interaction with an external magnetic field. In general, we
could imagine a system in which the field has different values at each site, and in any of
the x, y, z directions, which could be written as follows:

Hd =
n∑
i=1

3∑
µ=1

hµi σ
µ
i (4.7)

General Hamiltonian

We may now generate the complete Hamiltonian, for a system of N particles,

H = Hs−e +Hd , (4.8)

this is an Hermitian matrix of size 2N × 2N . By taking this graph theoretic approach to
constructing our network Hamiltonian, we are able to generate multiple classes of systems
simply through our choice of the elements of the adjacency matrix. As an illustrative
example, consider the well-known networks in Figure 4.1, which we can generate through
the Watts-Strogatz algorithm by selecting appropriate values for N and K, and, in the
case of weighted networks, such as the Scherrington-Kirkpatrick and Sachdev-Ye models
(Figure 4.1c), by introducing (Gaussian random) weightings on the edges.

Nevertheless, for the purposes of this thesis, we restrict ourselves to the unweighted net-
works of the Ising and Heisenberg models, and introduce long-range interactions through
the rewiring probability parameter p of the Watts-Strogatz algorithm.
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(a)
∑
σiσi+1 (b)

∑
Ji,i+1σiσi+1 (c)

∑
JijS

k
i S

k
j (d)

∑
Jijklψiψjψkψl

Figure 4.1: Example Spin Models

4.2.3 Numerical Diagonalisation

Due to the strongly-correlated nature of the long-range interactions introduced by the
rewiring algorithm, it is necessary to perform exact diagonalisation on the Hamiltonian;
approximation algorithms, such as DMRG, are most effective only for locally-interacting
systems in which particles interact with their near neighbours. Therefore, the decompo-
sition is performed by the Mathematica “Eigensystem” function, which implements the
standard BLAS/LAPACK packages found in virtually all scientific computing languages,
including Python NumPy, MATLAB, C MKL, Julia, and Fortran.

4.3 Analysis

We are now in a position to study our small-world spin networks, using the OTOC and
SFF to diagnose the system as we transition away from integrability by adding long-range
random interactions via the Watts-Strogatz algorithm.

4.3.1 Out-of-time-order Correlators

We begin by first examining the choice of operators from which to compute the OTOCs.
Note that we will be calculating the squared commutator CWV

0 , which is really 2(1 −
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Re(OTOC)), but will use the terms interchangeably. Given the expression (3.22) in
terms of unitary and Hermitian operators W and V ,

CWV
0 (t) ≈ 2[1− Re( 〈ψ|(W (t)V (0)W (t)V (0)|ψ〉)] ,

and noting that we are studying pure spin systems, the degrees of freedom are given by
the Pauli spin operators, Sx, Sy and Sz. Therefore, we can write the OTOC as

Cµν
0 (v, t) ≈ 2[1− Re( 〈ψ|(Sµv (t)Sν1(0)Sµv (t)Sν1(0)|ψ〉)] , (4.9)

where the indices µ and ν select one of the x, y or z spin operators, and the parameter v
indicates the spin operator acting at vertex v in the network. Now, the quantity Cµν

0 (v, t)

probes the operator at site v, and so provides a measure of how a disturbance applied at
vertex 1 spreads over the network as a function of time.

Transverse Field Ising Chain

As an example, let us consider the transverse field, spin-1
2
Ising chain with nearest-

neighbour interactions and periodic boundary conditions. In this regular case, where
we do not rewire any edges, and only consider the (unit-weighted) nearest-neighbour in-
teraction, (obtained from the Watts-Strogatz algorithm by setting k = 1 and p = 0), the
adjacency matrix A(CN) is generated for the unweighted 2-regular cycle graph of order
N , CN ,:

A(CN) =

0 1 0 · · · 0 1

1 0

0
...

... 0

0 1

1 0 · · · 0 1 0




(4.10)

In this case, with J = {0N ,0N , JA(CN)}, where 0N is the N × N zero matrix, the
Hamiltonian expressions may be rewritten in the familiar form:

Hz = −J
2

(
N−1∑
i=1

σzi σ
z
i+1 + g

N∑
i=1

σxi

)
. (4.11)
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By choosing the couplings J = g = 1, we are considering the critical case, where the system
transitions between ferromagnetic and paramagnetic. Our reasoning for first considering
this system is twofold; (i) It is a well-studied model that allows us to compare our results
with those in the literature, thereby providing a benchmark of our numerics prior to our
study of a novel system, and (ii) provides a simplified, integrable, model for observing
the effect of the choice of operator for µ and ν, and understanding the behaviour of the
OTOCs in integrable spin systems.

With regards to point (ii), consider as an example the plots in Figure 4.2, for each of the
possible operator pairs on a regular Ising chain of N = 10 vertices. The plots on the main
diagonal are the pure correlators Cxx

0 (v, t), Cyy
0 (v, t) and Czz

0 (v, t), while the off diagonal
plots are the mixed correlators.

Our first observation from this chain of nearest-neighbour interactions is the presence of a
light cone-like wavefront that propagates through the chain in all cases, with zero operator
growth in the spacelike region. Within the timelike region of the wave, we see that the
pattern of operator spreading differs based on the choice of operators. Of particular
importance are the Cxx and Czz, since they probe the correlations in the directions of
the external field and spin-exchange interaction, respectively. The former produces a
shell-like wavefront where the correlations tend to zero in the timelike region, while the
latter produces a periodically oscillating light cone. These two are contrasted with the
remaining OTOCs, which produce an approximately constant plateau in the timelike
region. Furthermore, we note that the mixed correlators are not equivalent under an
exchange of the operators (CXY

0 (v, t) 6= CY X
0 (v, t) for example), but that qualitative

similarities between such pairs may be observed.

What is the physical significance of this behaviour? As discussed in Section 3.3.1, expo-
nential early-time growth is widely regarded as an indicator of chaotic dynamics, while at
late times Cµν

0 → 2 and Cµν
0 → 0 are indicative of scrambling and localisation of quantum

information, respectively. In this sense, then, we can say that there is no scrambling of
the σx operator, but that the plateau of the timelike region is a signature of scrambling,
most noticeably in the case of the smooth plateau of Czx in 4.2g.

We could relate this operator dependence of the scrambling behaviour to the very recently
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Figure 4.2: OTOCs for the Ising spin chain given by (4.11) with N = 10 vertices. Each
figure plots the quantity Cµν

0 (v, t) in (4.9) as a function of time, t, and vertex position,
v. These plots indicate how the different operators spread through the periodic chain
following an initial perturbation applied at vertex 1.

introduced Operator Thermalisation Hypothesis (OTH) (85), which, in contrast to the
Eigenstate Thermalisation Hypothesis (ETH), proposes that even in integrable theories,
with highly-structured eigenvalue spectra, it is possible to observe thermalisation simply
through a choice of sufficiently complex operator with which to probe the system.

Before continuing, we confirm, with regard to point (i) above, that our numerics are
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Figure 4.3: Log-Log plots of the OTOCs, for vertices 2 through 5, from Figure 4.2, focusing
on the growth at early timescales. The dashed lines represent the power-law expressions
given by (4.12) to (4.14).

producing accurate results. We refer to the work of Lin and Motrunich (23), in which
they study the Cxx, Czx and Czz operators for the same transverse field Ising chain. In-
deed, visual comparison with Figures 4.2a, 4.2g and 4.2i does indicate that our results are
qualitatively accurate. For a quantitative comparison, the researchers derived, using the
Hausdorff-Baker-Campbell (HBC) expansion, the following universal power-law expres-
sions for the early-time growth of the OTOCs as functions of vertex position, time and
model couplings J and g:

Cxx
0 (v, t; J, g) =

2g2l−2(Jt)4l−2

((2l − 1)!)2
(4.12)

Czx
0 (v, t; J, g) =

2g2l(Jt)4l

((2l)!)2
(4.13)

Czz
0 (v, t; J, g) =

2g2l+2(Jt)4l+2

((2l + 1)!)2
(4.14)

In Figure 4.3, we therefore plot, together, the early-time growth of the OTOCs from Fig-
ures 4.2a, 4.2g and 4.2i, together with the analytic results from the equations (4.12), (4.13)
and (4.14). These results clearly indicate a good agreement with the analytically derived
results, and match precisely with the same figures as presented by Lin and Motrunich.
Additionally, these results reinforce the expected power law growth of the OTOCs for a
well-known integrable system with short-range interactions.
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Let us now ask the question: What can we learn from, and about, OTOCs in an interact-
ing many-body quantum system transitioning between completely regular and completely
disordered behaviour? Specifically, we shall examine the correlators for our quantum
small-world models as the rewiring probability is varied from 0 to 1, thereby introducing
disorder via long-range, random, interactions. Indeed, as we transition away from inte-
grability, are there any cases where we observe exponential growth at early times, and
how is the late time behaviour affected?

Small-world Ising model

Completing our analysis of the transverse field Ising model, we refer to Figures 4.4 and 4.5,
corresponding to the (K = 1) nearest-neighbour and (K = 2) next-to-nearest-neighbour
interactions, respectively.

Looking at Figure 4.4, we plot the OTOCs for the network at the three rewiring probabil-
ities, p = 0, 0.1 and 1, which, for the regular network of 9 vertices and edges, corresponds
to 0, 1 and 9 rewired edges, respectively. From the contour plots, we observe a breakdown
in the wavefront as long-range interactions are introduced into the system. However, this
is understood when one considers the notion of distance in the graph, and how the causal
structure is affected by the connectivity. To be precise, since the initial perturbation is
applied at vertex 1, and propagates along the edges, we should consider the edge distance
from vertex 1 to vertex i as a form of discrete metric on the network.

For example, in column 2, the rewiring changes the edge (1, 2)→ (1, 6). Before rewiring,
d(1, 2) = 1 and d(1, 6) = 4. After the rewiring, d(1, 2) = 5 and d(1, 6) = 1. The effect
of this is clear in the 2D plots on the third row of the figure; Czz

0 (6, t) was the last to
grow from zero, while after the rewiring it exhibits growth at the same time as vertex 9,
while Czz

0 (2, t) is the furthest from vertex 1. Therefore, we should be able to recover the
wavefront effect, in a sense, by plotting the contours, not based on vertex number, but on
distance d(1, i). As an example, consider Figure 4.6, where we change the order in which
the vertices are plotted from {1, 2, 3, 4, 5, 6, 7, 8, 9} to {1, 2, 9, 3, 5, 4, 6, 7, 8}.

Let us look more closely at the growth curves in row 3, specifically at the initial growth
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(e) Czz0 (v, t) for p = 0.1
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(f) Czz0 (v, t) for p = 1

Figure 4.4: Contour and 2D plots of the OTOCs for different rewiring probabilities. Note
that the colour of the curve refers to the OTOC probed at the corresponding vertex of
the same colour on the graph.

phase. It is apparent that, as p increases, the most significant difference is the order in
which the OTOCs for each vertex grow, depending on the distance from vertex 1. Indeed,
it would appear that the time taken for the initial growth phases, and the rate of growth
of the curves within this period, is not affected by the rewiring probability.

To make these observations more precise, we define the growth time, t∗v, taken to reach the
inflection point of the correlation curve for vertex v, ∂2Czz0 (v,t)

∂t2
|t=∗

v
= 0. As an illustrative

example, consider the OTOCs in Figure 4.7, where the green highlighted points represent
Czz

0 (v, t ≤ t∗v), and the red vertical lines indicate the t∗v. In the third plot, we plot the
t∗v as a function of the distance between vertex v and vertex 1, d(1, v), for increasing
rewiring probabilities. The linearity of the curves indicates that the relationship is indeed
independent of rewiring probability.
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(e) Czz0 (v, t) for p = 0.1
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(f) Czz0 (v, t) for p = 1

Figure 4.5: Contour and 2D plots for an Ising network of next-to-nearest-neighbour in-
teractions for varying rewiring probabilities.

Now, most importantly, let us investigate how the rewiring probability affects the growth
rate of the OTOCs. We shall do this in two ways; by (i) comparing the power-law model
of (4.14), and (ii) finding best-fit curves to Czz

0 (v, t ≤ t∗v).

In Figure 4.8, we plot the universal power-law curves, derived for the regular Ising chain,
against the small-world networks with rewired edges. These plots indicate overall good
agreement, though we do see deviations increasing with distance from vertex 1. All of
the curves follow polynomial time growth that appears to decrease; the rate of growth is
slower for vertices further from the initial perturbation. Regardless of rewiring probability,
we do not observe exponential growth in the OTOCs.

This is confirmed by the fitted models in Figure 4.9, where we fit exponential (a(ebx− 1))
and polynomial (axb) models, using nonlinear regression, to the convex regions of the
OTOCs. This fitting returns the best-fit model parameters (a and b), that maximise the
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Figure 4.6: Contour plots of Czz
0 (v, t) using different methods of ordering the vertices.

R2 goodness-of-fit statistic for each curve. After averaging over all the curves, we see that
the polynomial models provide a better goodness-of-fit, indicating that they are a better
estimator of OTOC growth than the best-fit exponential models. This is significant, as
we do not observe a transition from polynomial-time to exponential time growth. We
may therefore conclude that the OTOC does not diagnose chaos in the small-world Ising
model.

Now, a similar set of observations may be made for the class of next-to-nearest neighbour
networks shown in Figure 4.5. The σiσi+2 terms of the next-to-nearest neighbour interac-
tions reduce the overall path length, and increase the edge density, in the network. This
leads to faster propagation of the correlations through the network. This interaction term
also causes the system to become non-integrable. Despite this change, comparison with
the power-law curves in Figure 4.10 shows that the OTOCs remain linear on the log-log
plots, and therefore continue to grow in polynomial time. Indeed, we can see from these
plots, in addition to those of 4.5, is that the rate of growth appears to be lower than for
the K = 1 case, particularly for the OTOCs of particles further from the starting site.

However, due to the increased edge density, we see that the correlations spread over more
particles at each time step, leading to overall lower peak values of Czz

0 (v, t). Furthermore,
it can be seen that once all of the correlators have experienced a period of initial growth,
they appear to fluctuate about a constant value of ∼ 1. This is an indication of quantum
scrambling ; the delocalisation of the quantum information (introduced by our initial con-
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(b) Czz0 for GSW (9, 1, 1).
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(c) Plots of t∗v vs d(1, v).

Figure 4.7: Plots indicating the initial growth periods of the OTOCs for varying rewiring
probabilities. In (a) and (b), the green highlighted points indicate convexity, at times
t ≤ t∗v, with the red vertical lines at t = t∗v for each vertex v. The curves in (c) are for
rewiring probabilities p = 0, 0.1, 0.5, 1.0 on networks with N = 10 and K = 1. For p 6= 0,
each data point was obtained by taking the disorder average over 10 randomly generated
networks sampled from the ensemble GSW (10, 1, p).

dition), over the system degrees of freedom due to unitary evolution. In other words, as
the system evolves in time, the initial perturbation spreads via the spin-exchange interac-
tion. The information becomes increasingly delocalised, until it is difficult to recover the
initial perturbation, analogous to irreversibility in thermal processes.

Additionally, the rate at which this scrambling occurs appears to be greater for the regular
network than for the small-world or random networks, though the difference between
p = 0.1 and p = 1, at least for this particular example, does not appear to be significant.
We argue that the scrambling rate is dependent on the average path length of the network,
which, as we have seen for small-world networks, is strongly dependent on the rewiring
probability (see Figure 2.9a).

In order to quantify the scrambling rate, we need to first identify the scrambling time,
beyond which we are unable to recover the initial state. Qualitatively, we know that this
occurs when Re{〈Szv(t)Sz1(0)Szv(t)S

z
1(0)〉} ∼ 0; the time beyond which the operator Szv(t)

has spread sufficiently that it no longer commutes with Sz1(0). However, we note that
this is still an area of active research (86; 10), and that the random fluctuations of the
correlations make the precise identification of such a time difficult.
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(a) Czz0 for GSW (9, 1, 0.1).
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(b) Czz0 for GSW (9, 1, 1).

Figure 4.8: Log-log plots of the OTOCs for networks generated with (a) p = 0.1 and (b)
p = 1, showing power-law behaviour. The solid lines are the Czz

0 (v, t), and the dashed
lines are given by the power-law expression of (4.14), with l = d(1, v).

We could make empirical approximations, based on statistical features of the simulated
curves; however in the absence of physical, or analytical, arguments, this would be specula-
tive. As examples, shown in Figure 4.11, where we plot the mean and standard deviations
of the OTOCs alongside the original curves. We see that, after the initial growth period,
the mean correlation, 〈Czz

0 (t)〉v, fluctuates about a constant value of ∼ 1. Furthermore,
from the two samples shown in the figure, the time taken to reach this state is shorter for
the random graph than for the regular graph.

Small-world Heisenberg Model

Having studied in detail the transverse field Ising model on small-world networks, with
σzi σ

z
j spin interaction, let us now introduce the transverse spin interactions, σxi σxj and

σyi σ
y
j into the Hamiltonian. We may therefore write a general Hamiltonian, related to

the XY Z Heisenberg model, without external interactions and over any network of spin
interactions,

HXY Z =
N∑
i=1

N∑
j=1

∑
µ∈{x,y,z}

Jµijσ
µ
i σ

µ
j . (4.15)

Page 62



4.3. ANALYSIS

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

Time

C
(t
)

Exponential Fit

Vertex ∼ Exponent
1 ∼ 2.42

2 ∼ 2.27

3 ∼ 2.01

4 ∼ 1.84

5 ∼ 1.71

6 ∼ 1.64

7 ∼ 1.48

8 ∼ 1.60

(a) Czz0 for GSW (9, 1, 0.1), fitted with
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1) at
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Figure 4.9: Plots indicating the (a, b) exponential and (c, d) power-law fitted models for
(a, c) p = 0.1 and (b, d) p = 1. The models were fitted to the convex regions of each
curve (highlighted green), where t ≤ t∗v. The goodness-of-fit is given by the R2 statistic,
averaged over each of the curves. The legends indicate the best-fit exponents (b) for each
fitted model, with the curves numbered sequentially in time.

The Jµ = JµA weighted adjacency matrices define the network topology and (an)isotropy;
we shall consider the adjacency matrix to be fixed in the x, y, z directions, with only the
weightings able to vary. Specifically,

Jx = Jy = Jz =⇒ XXX ,

Jx = Jy 6= Jz =⇒ XXZ ,

Jx 6= Jy 6= Jz =⇒ XY Z .
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(b) Czz0 for GSW (10, 2, 0.1).
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(c) Czz0 for GSW (10, 2, 1).

Figure 4.10: Log-log plots of the OTOCs for networks generated with (a) p = 0, (b)
p = 0.1 and (c) p = 1, showing power-law behaviour. The solid lines are the Czz

0 (v, t), and
the dashed lines are given by the power-law expression of (4.14), with l = d(1, v). The
colours of each curve indicate distance from the initial site.

Indeed, we begin by considering the following XXZ model,

HXXZ =
N∑
i=1

N∑
j=1

Jij
2

(
σxi σ

x
j + σyi σ

y
j

)
+ Jzijσ

z
i σ

z
j , (4.16)

with the weighting terms J = 0.5 and Jz = 0.6J . We consider these particular values to
compare with the results of Dóra and Moessner (2), who studied the OTOCs of this model
with nearest-neighbour interactions. Indeed, in this integrable case, they found that the
OTOCs also obey early-time power-law growth given by the equation

Czz
0 (v, t) ∼ t2l

(2l)!
. (4.17)

This formula was obtained by Swingle and Roberts (87) using the Hausdorff-Campbell-
Baker expansion of nested commutators of the time-evolved operator,

σµi (t) =
(it)0

0!
σµi +

(it)1

1!
[H, σµi ] +

(it)2

2!
[H, [H, σµi ]] + . . . (4.18)

Now, how do we expect the OTOC behaviour to change (from the one-dimensional Ising
interaction), given the addition of the transverse interaction terms? An initial comparison
of the plots in Figures 4.12, 4.13 (XXZ) and 4.5, 4.4 (Ising), shows increasingly random
fluctuations beyond the initial growth phase in the XXZ model, whereas those of the
Ising model have a more regular, ‘periodic’, appearance. Heuristically, it could be argued
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Figure 4.11: OTOCs for the regular, and random, next-to-nearest neighbour networks with
N = 10. The red curve indicates the mean, 〈Czz

0 (t)〉v, averaged over theN vertices, plotted
with standard deviation on the error bars. The horizontal dashed line at 1 represents the
value of the correlations at which the system is said to be scrambled.

that this is due to the new transverse terms allowing correlations to spread in the x and
y directions as well. Therefore, when observing the correlations in the z operators, Czz

0 ,
we see the effects of this operator mixing.

We now compare Figures 4.12 and 4.13, for the computed OTOCs for networks of 10
vertices, with edge densities given by the parameter K = 1, 2, respectively. In the regular
case, with p = 0, these correspond to nearest, and next-to-nearest, neighbour interactions,
respectively. At this, relatively, small number of vertices, the most obvious difference
between the two figures is the significant variation in path lengths for each graph, leading
to different rates of propagation of the OTOCs. A further observation is the increased
frequency of oscillation for the K = 2 case, due to the increased edge density in the
network. We could make an analogy with a system of coupled oscillators, where each
edge represents an effective spring constant; therefore by adding in more springs, the
effective spring constant increases and the system becomes ‘stiffer’ increasing oscillation
frequency.

What about the early-time growth of the correlations? From (4.17), we should expect to
see the OTOCs maintain power-law early-time growth rather than exponential. Looking

Page 65



CHAPTER 4. QUANTUM SMALL WORLDS

1

2

3

4

5

6

7

8

9

10

(a) GSW (10, 1, 0)

1

2

3

4

5

6

7

8

9

10

(b) GSW (10, 1, 0.1)

1

2

3

4

5

6

7

8

9

10

(c) GSW (10, 1, 1)

0

0.25

0.50

0.75

1.00

1.25

0

0.2

0.4

0.6

0.8

1.0

0

0.25

0.50

0.75

1.00

1.25

0 2 4 6 8 10

0.0

0.5

1.0

1.5

Time

C
(t
)

(d) Czz0 (v, t) for p = 0
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Figure 4.12: OTOCs for the Heisenberg XXZ model with N = 10 and K = 1 nearest-
neighbour interactions, at p = 0, 0.1, 1 in columns 1,2 and 3, respectively. The first row
depicts the graph for which the OTOCs were computed. The second row shows a 3D plot
of the initial perturbation propagating over the system. The third row shows the 2D plot
of the OTOCs projected onto the same plane. The colouring of vertices (in the first row)
and curves (in the third row), reflects the edge distance d(1, v), to vertex 1 (red).

at Figure 4.14, we observe that this is indeed the case; the OTOCs exhibit linear growth on
the log-log axes, at the same gradient (growth rate) predicted by the power-law formula.
These results are very similar to those of the Ising model in Figures 4.8 and 4.10: we see
good agreement with the power-law formula (predicted for the nearest neighbour system),
even for the random graph case in column 3 (provided that we plot the curves according
to distance from the initial vertex).

However, for the K = 2 case in row 2 of the Figure, we did in fact observe a deviation
between the predicted and computed curves. We obtained the agreement shown in plots
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Figure 4.13: OTOCs for the Heisenberg XXZ model with N = 10 and K = 2 next-to-
nearest-neighbour interactions, at p = 0, 0.1, 1. The first row depicts the graph for which
the OTOCs were computed. The second row shows a 3D plot of the initial perturbation
propagating over the system. The third row shows the 2D plot of the OTOCs projected
onto the same plane. The colouring of vertices (in the first row) and curves (in the third
row), reflects the edge distance d(1, v), to vertex 1 (red).

(d,e,f), by instead considering the modification of the formula (4.17),

Czz
0 (v, t) ∼ t2l

(2l − (K − 1))!
, (4.19)

where we introduce the familiar interaction length K. This formula appears to apply too
as K increases; of course for K = 1 it remains unchanged for the nearest neighbour model,
but for K = 2 and K = 3, we can see the improvements in Figure 4.15. The red lines of
the original formula deviate significantly from the actual computed curves, whereas the
modified formula maintains good agreement as K is varied.

We note that this is merely an empirical observation, and may not represent the true
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(b) GSW (10, 1, 0.1)
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(c) GSW (10, 1, 1)
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(d) GSW (10, 2, 0)
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(e) GSW (10, 2, 0.1)
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(f) GSW (10, 2, 1)

Figure 4.14: Log-log plots of the early-time behaviour of the Czz
0 (v, t) for the Heisenberg

XXZ model, with N = 10 vertices. Row 1 corresponds to the OTOCs, with K = 1 nearest
neighbour interaction, from Figure 4.12. Row 2 corresponds to the OTOCs, with K = 2

next-to-nearest neighbour interaction, from Figure 4.13. The columns, from left to right,
represent increasing rewiring probabilities, p = 0, 0.1, 1. In each plot, the solid curves are
the computed OTOCs, highlighted by colour depending on edge distance from vertex 1.
The dashed lines represent the power law curves.

behaviour of the system for arbitrary N and K. However, further investigation to derive
a formula with explicit K dependence is warranted.

Finally, what changes do we observe in the scrambling behaviour of the XXZ model,
compared to the Ising model? Looking at Figure 4.16, we actually observe less overall
scrambling relative to the Ising model; as discussed in the previous section we are using
the mean and standard deviation as a means of comparison, but note that it is speculative,
and not an absolute measure. Specifically, the vertex-averaged correlator, 〈Czz

0 (t)〉v, does
not approach a stable value of ∼ 1 at the same rate as for the Ising model. We argue
that this is also a consequence of the introduction of the transverse, x and y, degrees of
freedom. Since the initial perturbation can now spread over these as well, we observe a
lower value for the Czz

0 correlations in the z direction.
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(a) GSW (10, 2, 0)
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(b) GSW (10, 3, 0)

Figure 4.15: Log-log plots of the early-time behaviour of the Czz
0 (v, t) for the Heisenberg

XXZ model, with N = 10 vertices. In each plot, the solid curves are the computed
OTOCs, highlighted by colour depending on edge distance from vertex 1. The red dashed
lines represent the original power law curves predicted by (2). The black dashed lines
represent the modified power law curves given by (4.19).

Additionally, we observe that the growth is slower for the K = 1 case in the first row,
without a significant difference as p is increased. 4.16b is an interesting case, in that
the network configuration is analogous to a one-dimensional chain with a loop at the end
(Figure 4.12b). Thus, we observe the wavefront propagating over a longer time; hence
the localisation is maintained, and the scrambling effect is reduced. The scrambling rate
for the K = 2 networks in row 2 does appear to increase as the rewiring probability is
increased; 〈Czz

0 (t)〉v peaks nearer to 1, in Figure 4.16f, more rapidly than for the cases
with zero or few rewirings.

4.3.2 Spectral Form Factors

Having studied the OTOCs for the small-world spin networks, where the integrability
was broken by the introduction of long-range, random, rewirings, we observed a lack of
exponential growth in the correlations. Yet, from our understanding of RMT eigenvalue
statistics, we would expect to see some change in behaviour as our small world network
transitions from integrable to non-integrable. Therefore, we now utilise the spectral form
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Figure 4.16: Replotted OTOCs for the 6 network configurations of Figures 4.12 and
4.13, showing the scrambling behaviour. The dotted black curves are the original curves
Czz

0 (v, t). The blue dashed lines represent the correlator values at which the scrambling
is expected to maximise. The red curve is the mean correlation, 〈Czz

0 (t)〉v, averaged over
each vertex, with standard deviation on the error bars.

factor as a further diagnostic that may serve as a link between the early-time behaviour
of the OTOCs and the late-time, statistical behaviour of the Hamiltonian eigenvalue
spectrum.

As discussed in Section 3.3.2, our analysis of the spectral form factors, for varying network
configurations, is primarily focused on two properties, (i) the dip-ramp-plateau structure,
and (ii) the relationship between the ramp length, tplateau − tdip, and the system size, N .

Beginning with Figure 4.17, we compute the infinite temperature (β = 0) SFF for a
Heisenberg XXX network of N = 11 vertices. From left to right, we can see that the
transition to ramp-plateau structure is immediate following the introduction of random
rewirings, becoming more pronounced with increasing randomness.

The smooth dip structure appears to be universal, which can be understood by considering

Page 70



4.3. ANALYSIS

0.01 0.10 1 10 100 1000
10-5

10-4

0.001

0.010

0.100

1

0.01 0.10 1 10 100 1000
10-4

0.001

0.010

0.100

1

0.01 0.10 1 10 100 1000
10-4

0.001

0.010

0.100

1

Figure 4.17: Spectral form factors g(t; 0), at infinite temperature, for various rewiring
probabilities of the Heisenberg XXX network of N = 11 vertices. The plot on the left is
for the regular chain with p = 0. The central plot is of the small-world network containing
a small number of rewirings (1 =⇒ p ≈ 0.09 in black, 2 =⇒ p ≈ 0.18, in blue and
3 =⇒ p ≈ 0.27 in red). The plot on the right is for p = 1, corresponding to a random
graph. The disorder average is taken over J = 100 realizations of each network.

the form of the SFF as expressed in (3.31); rewritten here:

g(t; 0) =
1

2N

〈
2N + 2

2N−1∑
m=1

2N∑
n=m+1

cos (Em − En)t

〉
J

.

At t = 0, the summation term is zero, giving g(t; 0) = 1. For sufficiently small times,
the cosine term is dominated by t � 1, making g(t; 0) essentially independent of the
differences in energy levels, since at small times cos t ≈ 1; this is illustrated by the
example of a log-log plot of cos t in Figure 4.18.
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Figure 4.18: Log-log plot of the function cos t for small values of t.

Subsequently, as t increases the first (Em−En) terms to challenge the dominance of small
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(a) SFFs with R = 3 rewirings.
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(b) SFFs with p = 1 random graphs.

Figure 4.19: Plot of the spectral form factors for varying system sizes, with a fixed number
of edges, K = 2, and (a) 3 rewirings and (b) completely random graphs.

t will be those with the largest energy separations. By extrapolation, we may note that
the time parameter, t, determines the scale of energy differences being probed (1), with
the energy separations decreasing as t increases. Indeed, this behaviour is the origin of
the plateau structure, since at large enough times only the (zero energy separation) terms
with Em = En survive. Moreover, the time at which this occurs is referred to as the
plateau time, tp, and is defined as the disorder-averaged inverse mean level spacing,

tp =

〈
2N − 1∑2N−1

i=1 |Ei+1 − Ei|

〉
J

. (4.20)

The inverse mean level spacing is the same quantity used to perform spectral unfolding in
order to study the eigenvalue spacing distribution (as discussed in Section 3.2). Now that
we are able to determine the time of onset of the plateau, tp, we just need the dip time
td in order to calculate the length of the ramp. This is easy to achieve computationally,
since it corresponds to the first stationary point of the curve after the dip.

We now plot the spectral form factors in Figure 4.19, for small-worlds (4.19a) and random
graphs (4.19b) at varying N . The vertical dashed lines indicate the times td and tp, in
the same colour as the associated SFF curve. From these plots, we notice a number of
features. Firstly, there does not appear to be a significant difference between the curves
for the small world and random graphs; the biggest change in behaviour is a lowering of
the small ‘peak’ following the dip time for the random graphs.
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Secondly, the magnitude of the fluctuations appears to decrease as the system size in-
creases. This could be due to an increased number of graphs over which the disorder
average can be taken, since the purpose of the averaging procedure is to smooth them
out. More precisely, for smaller graphs, there are only a limited number of unique config-
urations, and so there is the possibility of repeated replicas being taken in the averaging,
which do not have an effect. However, the number of configurations grows exponentially
with graph size and order, hence the rapid smoothing as N grows.

Thirdly, the plateau time appears to grow linearly with system size; the spacing between
consecutive vertical lines looks very much constant. Finally, the dip time actually de-
creases with increasing N . This is a surprising observation, since for chaotic models such
as SYK, or even Gaussian random matrix ensembles, the rapid growth of the dip time
is a significant factor, even leading Cotler et al (1) to make the conjecture that it is a
new timescale in the theory. A final comparison is therefore to note that we see a linear
growth in the length of the ramp, whereas they observed it to be exponential for the SYK
model.

4.3.3 Eigenvalue Statistics

In this section, we provide a brief overview of our preliminary analysis of eigenvalue
statistics. We note that this research is still ongoing.

Now, this system is completely integrable and the spectrum is exactly solvable, in the
large-N limit, using the Bethe Ansatz (88). We can also use intuition from classical
physics to understand the eigenvalue spectrum in this case; such a system ofN spins, either
up or down, should have 2N eigenvalues in N + 1 distinct energy levels. Furthermore,
degeneracies due to rotational symmetry should result in

(
N
i

)
repeated eigenvalues at

energy level 0 ≤ i ≤ N . As an example, consider a network with N = 5, and normalised
spectrum, as shown in Figure 4.20. For 5 particles, there are 6 possible configurations of
up-, and down-, spinors, as enumerated in Table 4.2.

However, in Figure 4.20b, we see only three distinct energy levels; isotropy in the z-
direction means that there is no energetic difference between spin-up and spin-down, so
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Figure 4.20: Network graph and normalised eigenvalue spectrum for a periodic Ising chain
of 5 particles and nearest-neighbour interactions. Note that we normalise the spectrum
in the range 0 to 1, since we are more interested in their relative values, for the spacing
distribution.

the 3 levels correspond to (i) all spins aligned (2 states at E = 0 and Sz = ±5
2
), (ii) 1

spinor anti-aligned (20 states at E = 0.5 and Sz = ±1
2
), and (iii) 2 spinors anti-aligned

(10 states at E = 1 and Sz = ±3
2
).

In this case, it is clear that the spacing distribution is Poisson-like (as expected for an
integrable system), since there are only 2 nonzero values (∆E = 0.5), representing the
transitions between the 3 energy levels.

In order to distinguish each of the 6 spin parity sectors, we must break these symmetries
by introducing the external field interaction of (4.7), resulting in Figure 4.21a. This is
in agreement with the possible configurations listed in Table 4.2. Note the small gap in
the 10 eigenvalues corresponding to spins ±1

2
. These energy levels both contain 2 spinors

anti-aligned with the other 3; the gap is due to energetic disparities between configurations
where the 2 spinors are adjacent, or separated by one of the other anti-aligned spinors.
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Sz States Configurations
5
2

1 ↓ ↓ ↓ ↓ ↓
3
2

5 ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑

1
2

10
↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↑
↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↑

−1
2

10
↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑
↑ ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↑ ↓ ↑

−3
2

5 ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑
−5

2
1 ↑ ↑ ↑ ↑ ↑

Table 4.2: Spin state configurations for 5 spin-1
2
particles in a periodic Ising chain.

4.4 Summary

In this chapter, we have presented the results of our numerical simulations of quantum
small-world spin networks. This is a novel class of spin model that we have introduced
through the application of the Watts-Strogatz algorithm to the familiar spin-exchange
Hamiltonian in a network of spinors.

We began by discussing the methodology approached in simulating such a system, in-
cluding the computational specifications, programming language and packages used in
performing the exact diagonalization of the system Hamiltonian.

In analysing our quantum small-worlds, we first utilised the regular (integrable) Ising
model as a benchmarking tool for ensuring that our numerical procedure is correct and
able to reproduce known results in the literature. Specifically, we compared our results
with those of Lin and Motrunich for the calculation of the OTOCs for the same model, and
found good agreement. Thereafter we applied the Watts-Strogatz algorithm to generate
small-worlds containing random, long-range, interactions, and studied the effects of these
on the system OTOCs. We found that the OTOCs continue to exhibit polynomial-time
growth, even in the presence of long-range disorder. Thus, even for non-integrable systems,
there is no exponential growth indicative of chaotic behaviour at early times.

Page 75



CHAPTER 4. QUANTUM SMALL WORLDS

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Eigenvalue Number

E
ne
rg
y

(a) Spectrum with a moderate external

field, h = 20 and unit coupling strengths.
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(b) Spectrum with h = 20 external field

and edge weights sampled from a uniform

distribution with unit mean and σ = 0.9

standard deviation.

Figure 4.21: Eigenvalue spectra for the chain of 5 particles, illustrating the effects of an
external field and edge weightings on the system energy levels.
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Chapter 5

Conclusion

5.1 Thesis Summary

We began this thesis with the aim of studying the scrambling of quantum information
in interacting many-body quantum systems. In particular, we have been interested in
understanding the relationship between scrambling and properties such as chaos, disorder
and randomness. However, the way in which these properties interact, to affect the
scrambling behaviour of a given system, has remained obscured. Indeed, identifying the
precise nature of these interactions is a significant problem with wide-ranging implications,
from the physics of black hole thermalisation to localisation and coherence in quantum
computing.

With this goal in mind, we set out to study a system in which the amount of disorder
could be controlled, parametrically, thereby allowing us to observe a transition between
integrability and non-integrability. To this end, we introduced the concept of a quantum
small world - the quantum analog of the Watts-Strogatz model of network theory. In this
model, disorder is introduced through the generation of interactions between randomly
selected particles, which is controlled by the rewiring probability parameter of the Watts-
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Strogatz algorithm. The bulk of the research covered in this thesis was concerned with
developing the theoretical and computational tools necessary to construct, simulate, and
analyse this class of model; the details of which have been submitted for publication (44),
and are summarised as follows.

In Chapter 2, we discussed the theory of classical small world networks. This began with
a review of key concepts and definitions from algebraic graph theory. Most notable for our
work were the adjacency matrix representation of, and notions of distance, path length
and clustering in, graphs. These concepts were then used to introduce the small world
network model of Watts and Strogatz, constructed by way of their namesake algorithm.
By studying the small-worldness parameters for varying network configurations, we found
that the characteristic features of high clustering and low path length were maximised
in large (N > 200) sparse networks with low (ρ < 0.1) edge density and low rewiring
probability (p ∼ 0.1).

In Chapter 3, we introduced measures for diagnosing chaos in quantum systems. A re-
view of the origins of quantum chaos led us to the basics of random matrix theory; here
we focused on the Gaussian random matrix ensembles, the most significant results being
the Berry-Tabor and Bohigas-Giannoni-Schmidt conjectures. These relate the spectral
statistics of integrable and chaotic quantum systems to Poisson and Wigner surmise dis-
tributions, respectively. Next, we discussed two time-dependent signatures of chaos that
have been studied extensively in recent years, the out-of-time-order correlator and spectral
form factor. Whereas the RMT statistics were originally used to study the late-time, sta-
tistical, features of quantum analogues of classically chaotic systems, the OTOC and SFF
have been utilised to probe chaotic behaviour, at early and intermediate timescales, in
strongly-correlated many-body quantum systems that do not have a classical counterpart.

Chapter 4 forms the central results of this thesis, wherein we applied the techniques
developed in the earlier chapters to study the dynamical properties of quantum small
world networks. We began by detailing our methodology for performing this analysis
by numerical simulation. Due to computational limitations on the size of system that
could be simulated, we found that the rewiring probability was not a good parameter for
controlling the amount of disorder introduced into the system. Therefore, we proposed a
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modification to the Watts-Strogatz algorithm, based instead on specifying the number of
random rewirings to be performed, which is more appropriate for systems of N ∼ O(10)

particles.

We used this modified algorithm to generate a small world network, and then used the
graph adjacency matrix to construct a generic interaction Hamiltonian of spin-half parti-
cles located at each vertex. Numerical time evolution of the spin operators was performed,
in the Heisenberg representation, by exact diagonalisation of the Hamiltonian.

We then studied in detail the OTOCs for varying network configurations. We began
by testing our results against those of known models in the literature, specifically for the
transverse field Ising, andXXZ Heisenberg, chains, both easily recovered from our generic
interaction Hamiltonian. Agreement with these results confirmed that our numerical
procedures were precise.

This led naturally to the original work presented in this thesis, wherein we extended our
analysis by considering the same models, and then introducing disorder through increasing
numbers of rewired edges, and next-to-nearest neighbour interactions. Both of these
resulted in the systems becoming non-integrable. We extracted two primary features
from the OTOCs, (i) the growth rate at early times and (ii) the average value at late
times.

We found that, for both the Ising and Heisenberg models, regardless of the number of
rewirings introduced, the OTOCs obeyed the power-law curves predicted for the regular,
nearest-neighbour only chains, up to small deviations at larger time scales. Indeed, we
observed that the time at which the OTOCs of each vertex began to grow depended only
on the distance from the vertex to the site of the initial perturbation, but that the growth
rate still matched the power law predictions.

We did not see any evidence of a transition from polynomial to exponential growth, and,
therefore, no sign of early-time chaos in the form of a Lyapunov exponent. The same
results were obtained for the next-to-nearest neighbour, K = 2, chains, with and without
random rewirings. The only observed difference was for the XXZ model, where the exact
form of power-law behaviour appeared to deviate for varying K value. We proposed a
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new scaling law with explicit K dependence, and found improvement in the fit to the
simulated OTOCs.

Regarding the late-time behaviour of the OTOCs, the growth of the time-evolved operators
at each site is related to the scrambling of the information (of the initial perturbation)
over the system degrees of freedom under unitary time evolution. We observed that
the systems with random rewirings, and higher edge densities, scrambled faster than the
regular, integrable, models. In other words, there appeared to be a correlation between
the average path length of the graph and the scrambling time. However, given the small
system sizes that were studied, it was difficult to discern a clear relationship between small
and large numbers of rewirings and the scrambling time; the results we obtained were not
conclusive, though, intuitively, we would expect to observe such a correlation.

Finally, we turned to the spectral form factor as a final diagnostic to understand these
systems that were known to be non-integrable, yet did not exhibit exponential growth in
their OTOCs. We computed the SFFs for the same spin networks as the OTOCs, varying
the interaction length, K, and the number of rewired edges, from 0 (regular graph) to NK
(random graph). Again, we investigated two primary features from the SFFs, (i) the dip-
ramp-plateau behaviour expected for non-integrable systems, and (ii) the N dependence
of the ramp length (equivalently, plateau time) expected for chaotic systems.

We found that the regular (integrable) networks, with no rewirings, did not exhibit a clear
ramp-plateau behaviour. However, as we increased the number of random rewirings, the
dip and ramp become more pronounced, with a more stable plateau. This is indicative
of the level repulsion in the eigenvalues at small energy separations, consistent with the
Wigner surmise predictions of RMT. Despite this result, we did not observe a clear growth
in the length of the ramp as N was increased.

In conclusion, from our study of the OTOCs and SFFs of quantum small world spin net-
works, we have thus far not observed any behaviour that would be classified as chaotic,
despite the disorder associated with the introduction of random spin interactions in other-
wise integrable systems. Therefore, what we have found is a class of random, disordered,
models, without evidence of quantum chaos. Nevertheless we found that the introduction
of disorder, even at very low levels, with O(1) random rewirings, was sufficient to affect

Page 80



5.2. OUTLOOK

the ability of the system to scramble information.

5.2 Outlook

This thesis has presented a novel class of spin network that is able to transition between
ordered and disordered behaviour, along with preliminary analyses based on existing diag-
nostic tools. Furthermore, this is currently a exciting and relevant area of research, with
much future potential; clearly there is a significant amount of further work to be done,
with many possible avenues to explore. While the bulk of this work has been summarised
in (44), since this submission we have been preparing a follow-up paper, in which we will
provide a more detailed analysis of the quantum small world model. Broadly speaking, the
bulk of the immediate research lies in improving our (i) computational, and (ii) analytical
tools.

Regarding our numerical techniques for simulating a many-body quantum system, the
primary bottleneck is of course the exponential growth in the system Hilbert space. This
fact renders exact computations for the system sizes required to obtain a true small world
network, N ∼ O(100), intractable, even with access to state-of-the-art supercomputers.
However, there are a number of steps we could take to improve our numerics.

First, access to a high performance computing unit able to exploit parallel computations,
such as the University of Cape Town High Performance Computing Unit (UCT HPC), or
the national Center for High Performance Computing (CHPC).

Second, while Mathematica’s exact diagonalisation algorithms are based on the standard,
efficient, LAPACK, procedures available in most scientific computing languages, its dy-
namic programming paradigm renders lengthy iterative computations, such as OTOC and
SFF time evolution, highly inefficient. Therefore, we are in the process of converting our
code, such that we use Mathematica to construct and diagonalise the Hamiltonian ma-
trices, but then export and perform the time evolution using a more efficient, lower-level
language, such as C, FORTRAN, or even Julia, on a high performance cluster. A further
improvement comes in the form of approximation methods. Recently implemented by
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our collaborator Dario Rosa, the Lanczos algorithm has been used for near-exact diag-
onalisation, which has already enabled access to system sizes up to N = 26, for certain
calculations where the exact spectrum is not as necessary.

In terms of the analytical tools, the first expectation would be to obtain more defini-
tive results for the OTOCs and SFFs based on the access to increased system sizes. In
particular, it will be interesting to more clearly observe the relationship to the average
path length and clustering coefficients in larger networks. Furthermore, with regards to
the SFF, additional calculations need to be done in separating the connected and discon-
nected portions, and also considering finite temperature. Additionally, a new derivation of
the power-law scaling of the OTOCs for the Hamiltonians with K > 1 from the Hausdorff-
Campbell-Baker formula is necessary; it is hoped that this will result in a new scaling law
with explicit K dependence, that matches with our empirically observed results.

Second, despite our review discussion of the spectral properties of the small-world Hamil-
tonians, we noted that this is still a work in progress. The difficulties here lay in the
eigenvalue degeneracies and mixing of energy levels; this has most recently been resolved
through (i) the introduction of an external magnetic field term in the Hamiltonian to
separate these levels, and (ii) random weighting of the adjacency matrices to break the
degeneracies. However, a complete analysis based on the r-statistic is currently being
completed.

Finally, the introduction of the randomly weighted adjacency matrices opens up another
means of introducing disorder into the system. This is relevant since the well-known SYK
has Gaussian distributed random couplings (and a q-point order spin interaction). The
question here being how this might affect the scrambling or presence of chaos within the
system. Perhaps it is instead the nature of the two-particle spin exchange interaction
itself that is inherently non-chaotic, and it might be worth investigating higher-point
interactions on hypergraphs. Indeed, this is speculative, but it is to emphasise that we
have only just begun to scratch the surface on what appears to be a deep and fascinating
field of study.
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A Mathematica Code Package

1 (* ::Package:: *)

2

3 (* ::Section:: *)

4 (*Functions *)

5

6

7 pauliTensor[x_, i_, n_] := pauliTensor[x, i, n] = N[KroneckerProduct @@ Table[If[m !=

↪→ i, SparseArray[N[PauliMatrix[0]]], SparseArray[N[PauliMatrix[x]]]], {m, n}]]

8

9

10 adjacencyMatrix[n_, p_, k_] := Module[{},

11

12 graph = RandomGraph[WattsStrogatzGraphDistribution[n, p, k]];

13

14 While[! ConnectedGraphQ[graph], graph = RandomGraph[WattsStrogatzGraphDistribution

↪→ [n, p, k]]];

15

16 Normal[AdjacencyMatrix[graph]]

17

18 ]

19
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20

21 AdjacencyMatrixFixedRewirings[n_, rewirings_, k_] := Module[{

22

23 g = RandomGraph[WattsStrogatzGraphDistribution[n, 0, k]],

24

25 gComplete = CompleteGraph[n]

26

27 },

28

29 For[j = 1, j <= rewirings, j++,

30 {

31

32 e = RandomChoice[EdgeList[GraphDifference[CompleteGraph[n], g]]],

33

34 gT = EdgeAdd[g, e],

35

36 index = Flatten[Position[EdgeList[gT], e]][[1]],

37

38 newEdgeVertices = {EdgeList[gT][[index, 1]], EdgeList[gT][[index, 2]]},

39

40 neighbourList = Union[EdgeList[NeighborhoodGraph[g, newEdgeVertices[[1]]]],

↪→ EdgeList[NeighborhoodGraph[g, newEdgeVertices[[2]]]]],

41

42 edgeLengthList = Table[{i, GraphDistance[gT, neighbourList[[i]][[1]],

↪→ neighbourList[[i]][[2]]]}, {i, Length[neighbourList]}],

43

44 shortestEdgesList = Cases[edgeLengthList, i_ /; i[[2]] == Min[edgeLengthList

↪→ [[;; , 2]]]],

45

46 gTemp2 = gT,

47

48 While[! ConnectedGraphQ[gTemp2 = EdgeDelete[gT, neighbourList[[RandomChoice[

↪→ shortestEdgesList[[;; , 1]]]]]]], gTemp2 = EdgeDelete[gT, neighbourList[[

↪→ RandomChoice[shortestEdgesList[[;; , 1]]]]]]],

49

50 g = gTemp2

51

52 }
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53 ];

54

55 Normal[AdjacencyMatrix[g]]

56

57 ]

58

59

60 AdjacencyMatrixPlusRandomEdges[n_, edgesToAdd_, k_] := Module[{

61

62 g = RandomGraph[WattsStrogatzGraphDistribution[n, 0, k]],

63

64 completeGraph = CompleteGraph[n]

65

66 },

67

68 For[j = 1, j <= edgesToAdd, j++,

69 {

70

71 e = RandomChoice[EdgeList[GraphDifference[completeGraph, g]]],

72

73 g = EdgeAdd[g, e]

74

75 }

76 ];

77

78 Normal[AdjacencyMatrix[g]]

79

80 ]

81

82

83 SpinHalfHamiltonian[n_, k_, p_, {{\[Mu]x_, \[Sigma]x_}, {\[Mu]y_, \[Sigma]y_}, {\[Mu]

↪→ z_, \[Sigma]z_}}, fieldStrength_, OptionsPattern[{Model -> ToString[XXX], Field

↪→ -> ToString[Z]}]] := Module[

84 {

85

86 coupling

87

88 },

Page 85



CHAPTER 5. CONCLUSION

89

90 {

91

92 adjacency = AdjacencyMatrixFixedRewirings[n, p, k],

93

94 coupling = couplingTensor[n, adjacency, {{\[Mu]x, \[Sigma]x}, {\[Mu]y, \[Sigma]y

↪→ }, {\[Mu]z, \[Sigma]z}}, Model -> OptionValue[Model]],

95

96 Sum[(1) * coupling[[l, i, j]] * pauliTensor[l, i, n] . pauliTensor[l, j, n], {i,

↪→ n}, {j, i + 1, n}, {l, 3}],

97

98 (*Sum[(-1) * coupling[[l, i, j]] * pauliTensor[l, i, n] . pauliTensor[l, j, n],

↪→ {i, n}, {j, i + 1, n}, {l, 3}]*)

99

100 deformationMatrix[n, fieldStrength, Model -> OptionValue[Model], Field ->

↪→ OptionValue[Field]]

101

102 }

103 ]

104

105

106 SpinHalfHamiltonian2[n_, k_, p_, adjacency_, {{\[Mu]x_, \[Sigma]x_}, {\[Mu]y_, \[Sigma

↪→ ]y_}, {\[Mu]z_, \[Sigma]z_}}, fieldStrength_, OptionsPattern[{Model -> ToString[

↪→ XXX], Field -> ToString[Z]}]] := Module[

107 {

108

109 coupling

110

111 },

112

113 {

114

115 adjacency,

116

117 coupling = couplingTensor[n, adjacency, {{\[Mu]x, \[Sigma]x}, {\[Mu]y, \[Sigma]y

↪→ }, {\[Mu]z, \[Sigma]z}}, Model -> OptionValue[Model]],

118
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119 Sum[(1) * coupling[[l, i, j]] * pauliTensor[l, i, n] . pauliTensor[l, j, n], {i,

↪→ n}, {j, i + 1, n}, {l, 3}],

120

121 (*Sum[(-1) * coupling[[l, i, j]] * pauliTensor[l, i, n] . pauliTensor[l, j, n],

↪→ {i, n}, {j, i + 1, n}, {l, 3}]*)

122

123 deformationMatrix[n, fieldStrength, Model -> OptionValue[Model], Field ->

↪→ OptionValue[Field]]

124

125 }

126 ]

127

128

129 deformationMatrix[n_, fieldStrength_, OptionsPattern[{Model -> ToString[XXX], Field ->

↪→ ToString[X]}]] := Module[

130 {

131

132 deformationSize = fieldStrength * OptionValue[Model] /. {"XXX" -> 1, "XXZ" -> 1,

↪→ "XYZ" -> If[OddQ[n], I, 1], "IsingX" -> 1, "IsingY" -> 1, "IsingZ" -> 1},

133

134 deformationDirection = OptionValue[Field] /. {"I" -> 0, "X" -> 1, "Y" -> 2, "Z"

↪→ -> 3},

135

136 deformationSum,

137

138 deformationMatrix

139

140 },

141

142 deformationSum = Sum[pauliTensor[deformationDirection, j, n], {j, n}];

143

144 deformationMatrix = OptionValue[Model] /. {"XXX" -> deformationSum, "XXZ" ->

↪→ deformationSum, "IsingX" -> deformationSum, "IsingY" -> deformationSum, "IsingZ"

↪→ -> deformationSum, "XYZ" -> DiagonalMatrix[Table[Chop[Exp[I * (Pi / 2) *

↪→ deformationSum[[i, i]]]], {i, 2 ^ n}]]};

145

146 deformationSize * deformationMatrix

147
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148 ]

149

150

151 couplingTensor[n_, adjacency_, \[Delta]Weights_, OptionsPattern[{Model -> ToString[XXX

↪→ ]}]] := Module[

152 {

153

154 weights = Join[Table[Normal[Symmetrize[RandomReal[{\[Delta]Weights[[i, 1]] - \[

↪→ Delta]Weights[[i, 2]], \[Delta]Weights[[i, 1]] + \[Delta]Weights[[i, 2]]}, {n, n

↪→ }]]], {i, 3}], Table[0, {1}, {n}, {n}]],

155

156 weightsIndex = OptionValue[Model] /. {"XXX" -> {1, 1, 1}, "XXZ" -> {1, 1, 2}, "

↪→ XYZ" -> {1, 2, 3}, "IsingX" -> {1, 4, 4}, "IsingY" -> {4, 1, 4}, "IsingZ" -> {4,

↪→ 4, 1}}

157

158 },

159

160 Table[adjacency * weights[[weightsIndex[[i]], ;; , ;;]], {i, 3}]

161

162 ]

163

164

165 FourPointOTOC3[waveFunction_, forwardTimeEvolve_, n_, i_, jTable_, spinOperator1_,

↪→ spinOperator2_] := Module[{

166

167 },

168

169 operatorTimeEvolve = Conjugate[forwardTimeEvolve].pauliTensor[spinOperator1, i, n

↪→ ].forwardTimeEvolve;

170

171 psi2Temp1 = ParallelTable[Normal[pauliTensor[spinOperator2, j, n]].waveFunction, {

↪→ j, jTable}];

172 psi2 = ParallelTable[operatorTimeEvolve.psi2Temp1[[j]], {j, jTable}];

173

174 psi1Temp1 = operatorTimeEvolve.waveFunction;

175 psi1 = ParallelTable[pauliTensor[spinOperator2, j, n].psi1Temp1, {j, jTable}];

176

177 Table[Dot[Flatten[Conjugate[psi2[[v]]]], Flatten[psi1[[v]]]], {v, n}]
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178

179 ]

180

181

182 FourPointOTOC2[waveFunction_, forwardTimeEvolve_, n_, i_, jTable_, spinOperator1_,

↪→ spinOperator2_] := FourPointOTOC2[waveFunction, forwardTimeEvolve, n, i, jTable,

↪→ spinOperator1, spinOperator2] = Module[{

183

184 },

185

186 operatorTimeEvolve = ParallelTable[Normal[Conjugate[forwardTimeEvolve].

↪→ pauliTensor[spinOperator1, j, n].forwardTimeEvolve], {j, jTable}];

187

188 psi1Temp1 = ParallelTable[operatorTimeEvolve[[j]].waveFunction, {j, jTable}];

189 psi1 = ParallelTable[Normal[pauliTensor[spinOperator2, i, n]].psi1Temp1[[j]], {j

↪→ , jTable}];

190

191 psi2Temp1 = Normal[pauliTensor[spinOperator2, i, n]].waveFunction;

192 psi2 = ParallelTable[operatorTimeEvolve[[j]].psi2Temp1, {j, jTable}];

193

194 Table[Dot[Flatten[Conjugate[psi2[[v]]]], Flatten[psi1[[v]]]], {v, n}]

195

196 ]

197

198

199 OTOEvolution3[parameterTable_, timesTable_, waveFunction_, site_, OptionsPattern[{

↪→ Operator1 -> ToString[Z], Operator2 -> ToString[Z], ExternalField -> ToString[Z

↪→ ]}]] := Module[{

200

201 nVertices = parameterTable[[2]],

202

203 nTimeSteps = Length[timesTable],

204

205 hamiltonian = SpinHalfHamiltonian[parameterTable[[2]], parameterTable[[3]],

↪→ parameterTable[[4]], parameterTable[[7]], parameterTable[[6]], Model ->

↪→ parameterTable[[1]], Field -> OptionValue[ExternalField]],

206

207 operator1 = OptionValue[Operator1] /. {"I" -> 0, "X" -> 1, "Y" -> 2, "Z" -> 3},
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208

209 operator2 = OptionValue[Operator2] /. {"I" -> 0, "X" -> 1, "Y" -> 2, "Z" -> 3},

210

211 jSites = Table[Mod[v + site - 1, parameterTable[[2]], 1], {v, parameterTable

↪→ [[2]]}],

212

213 correlator = Table[0, {parameterTable[[2]]}, {Length[timesTable]}],

214

215 n

216

217 }, {

218

219 {eigenvalues, eigenvectorsRows} = Eigensystem[Normal[Chop[hamiltonian[[3]]] +

↪→ Chop[hamiltonian[[4]]]]];

220

221 eigenvectorsCols = ConjugateTranspose[eigenvectorsRows];

222

223 For[n = 1, n <= nTimeSteps, n++,

224 {

225

226 forwardTimeEvolve = eigenvectorsCols.DiagonalMatrix[Exp[-I*eigenvalues *

↪→ timesTable[[n]]]].eigenvectorsRows,

227

228 correlator[[All, n]] = FourPointOTOC3[waveFunction, forwardTimeEvolve,

↪→ nVertices, site, jSites, operator1, operator2],

229

230 (*Print[ToString[n]]*)

231

232 }

233 ];

234

235 correlatorNorm = Table[Norm[correlator[[v, t]]]^2, {v, nVertices}, {t,

↪→ nTimeSteps}];

236

237 correlatorReal = Table[(1 - Re[correlator[[v, t]]]), {v, nVertices}, {t,

↪→ nTimeSteps}];

238
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239 vertexList = If[EvenQ[nVertices], Append[Table[Mod[n - Floor[nVertices/2],

↪→ nVertices, 1], {n, nVertices}], Ceiling[nVertices / 2] + 1], Table[Mod[n - Floor

↪→ [nVertices/2], nVertices, 1], {n, nVertices}]] ;

240

241 correlatorNormTable = Table[{timesTable[[t]], correlatorNorm[[v, t]]}, {t,

↪→ nTimeSteps}, {v, nVertices}];

242

243 correlatorRealTable = Table[{timesTable[[t]], correlatorReal[[v, t]]}, {t,

↪→ nTimeSteps}, {v, nVertices}];

244

245 }; {

246

247 correlatorRealTable,

248

249 ListPlot3D[Table[correlatorRealTable[[;; , v, 2]], {v, vertexList}], DataRange

↪→ -> {{timesTable[[1]], timesTable[[nTimeSteps]]}, {1, nVertices}}, ColorFunction

↪→ -> "TemperatureMap", ViewPoint -> {-90, -135, 180}, PlotRange -> All, Ticks ->

↪→ None, AxesLabel -> {"Time", "Vertex", "C(t)"}],

250

251 ListPlot[Table[correlatorRealTable[[;; , v, ;;]], {v, nVertices}], Joined ->

↪→ True, PlotRange -> All, Frame -> True, FrameLabel -> {"Time", "C(t)"}],

252

253 hamiltonian

254

255 (*, FrameTicks-> {{{0, 0.5, SetPrecision[1.0,2], 1.5, SetPrecision[2.0,2], 2.5,

↪→ SetPrecision[3.0,2], 3.5}, None},{{0, 0.01, 0.1, SetPrecision[1.0, 2],

↪→ SetPrecision[10.0, 3],SetPrecision[100.0, 4]}, None}}, Frame->True*)

256 }]

257

258

259 FindConvexData[data_] := FindConvexData[data] = Module[{

260

261 convexUpToPosition = Position[Sign[Differences[Differences[Chop[data[[;; ,

↪→ 2]]]]]], -1][[1, 1]] + 1,

262

263 convexData

264

265 },
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266

267 convexData = data[[1 ;; convexUpToPosition]]

268

269 ]

270

271

272 InflectionPointPosition[data_, tolerance_, curvatureChange_] := Module[{

273

274 },

275

276 Position[Sign[Chop[Differences[Differences[data]], tolerance]], curvatureChange

↪→ ][[1, 1]] + 1

277

278 ]

279

280

281 MaxPointPosition[data_] := Module[{

282

283 diff

284

285 },

286

287 diff = Differences[Differences[data]];

288 Flatten[Position[diff, n_ /; n == Max[diff]]][[1]]

289

290 ]

291

292

293 FindBestFitModel[data_] := FindBestFitModel[data] = Module[{

294

295 modelExp = a (E^(b x) - 1),

296

297 modelPol = a x^b

298

299 (*modelSin = a Cos[b x + c] + d*)

300

301 },{

302
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303 NonlinearModelFit[data, modelExp, {{a, 10^-6}, {b, 1}}, x],

304

305 NonlinearModelFit[data, modelPol, {a, b}, x]

306

307 (*NonlinearModelFit[data, modelSin, {{a, -Max[data]}, b, {c, -1}, {d, Max[data]}}, x]

↪→ *)

308

309 }]

310

311

312 FitOTOCs[OTOC_] := Module[{

313

314 dataSetNonZero

315

316 }, {

317

318 dataSetNonZero = DeleteCases[Table[If[AllTrue[Chop[OTOC[[1, ;; , i, ;;]]][[;; ,

↪→ 2]], # == 0 &], Null, OTOC[[1, ;; , i, ;;]]], {i, Dimensions[OTOC[[1, ;; , ;; ,

↪→ ;;]]][[2]]}], Null],

319

320 Table[FindBestFitModel[dataSetNonZero[[i]]], {i, Dimensions[dataSetNonZero

↪→ ][[1]]}]

321

322 }]

323

324

325 PlotFittedOTOCs[OTOCData_, fittedData_, fittedModels_] := Module[{

326

327 PlotOTOC = ListPlot[OTOCData, PlotStyle -> Black],

328

329 PlotFittedData = ListPlot[fittedData, PlotStyle -> Green],

330

331 PlotExp = Plot[Table[fittedData[[2, i, 2]]["BestFit"], {i, Dimensions[fittedData

↪→ [[2]]][[1]]}], {x, 0, Last[fittedData[[1, 1]][[;; , 1]]]}, PlotStyle ->

↪→ Directive[Red, Thin]],

332

333 PlotPol = Plot[Table[fittedData[[2, i, 3]]["BestFit"], {i, Dimensions[fittedData

↪→ [[2]]][[1]]}], {x, 0, Last[fittedData[[1, 1]][[;; , 1]]]}, PlotStyle ->
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↪→ Directive[Red, Thin]],

334

335 PlotSin = Plot[Table[fittedData[[2, i, 4]]["BestFit"], {i, Dimensions[fittedData

↪→ [[2]]][[1]]}], {x, 0, Last[fittedData[[1, 1]][[;; , 1]]]}, PlotStyle ->

↪→ Directive[Red, Thin]],

336

337 RSquaredExp = Table[fittedData[[2, i, 2]]["RSquared"], {i, Dimensions[fittedData

↪→ [[2]]][[1]]}],

338

339 RSquaredPol = Table[fittedData[[2, i, 3]]["RSquared"], {i, Dimensions[fittedData

↪→ [[2]]][[1]]}],

340

341 RSquaredSin = Table[fittedData[[2, i, 4]]["RSquared"], {i, Dimensions[fittedData

↪→ [[2]]][[1]]}]

342

343 }, {

344

345 Show[PlotOTOC, PlotConvex, PlotExp, Frame -> True, FrameLabel -> {"t", "C(t)", "

↪→ Exponential Fit"}],

346

347 Show[PlotOTOC, PlotConvex, PlotPol, Frame -> True, FrameLabel -> {"t", "C(t)", "

↪→ Polynomial Fit"}],

348

349 Show[PlotOTOC, PlotConvex, PlotSin, Frame -> True, FrameLabel -> {"t", "C(t)", "

↪→ Sinusoidal Fit"}],

350

351 {RSquaredExp, RSquaredPol, RSquaredSin}

352

353 }]

354

355

356 powerLawZZ[t_, l_, J_, g_] := 2*((J t)^(4l + 2) g^(2 l + 2))/((2l+1)!)^2

357

358

359 powerLawXZ[t_, l_, J_, g_] := 2*((J t)^(4l) g^(2 l))/((2l)!)^2

360

361

362 powerLawXX[t_, l_, J_, g_] := 2*((J t)^(4l - 2) g^(2 l -2))/((2l-1)!)^2
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363

364

365 powerLawXXX[t_, l_, K_, g_] := (t)^(2l)/(2 l-(K-1))!

366

367

368 RSquaredPowerLawZZ[list_, v_] := 1 - SquaredEuclideanDistance[list[[;; , 2]],

↪→ powerLawZZ[#, v, 1, 1] & /@ list[[;; , 1]]]/SquaredEuclideanDistance[list[[;; ,

↪→ 2]], Mean@list[[;; , 2]]]

369

370

371 SFF[eigenvalues_, timeSteps_] := Module[

372 {

373

374 nEigenvalues = Length[eigenvalues]

375

376 },

377

378 nEigenvalues + Sum[Sum[2 * Cos[(eigenvalues[[n]] - eigenvalues[[m]]) * #], {m, n -

↪→ 1}], {n, 2, nEigenvalues, 1}] & /@ timeSteps

379

380 ]
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